A336116 Primes of the form q*2^h - 1, where q is a Fermat prime.
2, 5, 11, 19, 23, 47, 67, 79, 191, 271, 383, 1087, 1279, 4111, 5119, 6143, 16447, 20479, 81919, 262147, 263167, 786431, 1114111, 1310719, 16842751, 17825791, 1073758207, 4295032831, 4311744511, 17180131327, 21474836479, 51539607551, 824633720831, 1168231104511
Offset: 1
Keywords
Programs
-
Mathematica
NestList[NestWhile[NextPrime, #, ! (PrimeQ[#2] && With[{p = NestWhile[BitShiftRight, #2 + 1, EvenQ] - 1}, BitAnd[p, p - 1] == 0 && With[{b = BitLength[p]}, BitAnd[b - 1, b - 2] == 0]]) &, 2] &, 2, 25] (* Jan Mangaldan, Jul 14 2020 *)
-
PARI
A000265(n) = (n>>valuation(n,2)); isA019434(n) = ((n>2)&&isprime(n)&&!bitand(n-2,n-1)); isA336116(n) = (isprime(n)&&isA019434(A000265(1+n)));
Formula
For all n >= 1, A335885(a(n)) <= 2.
Extensions
More terms from Jinyuan Wang, Jul 11 2020