cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336225 Table read by antidiagonals: T(n, k) = digitsum(n*k) with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 10, 3, 3, 10, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 12 2020

Keywords

Examples

			The table T(n, k) begins
0   0   0   0   0   0   0   0 ...
0   1   2   3   4   5   6   7 ...
0   2   4   6   8   1   3   5 ...
0   3   6   9   3   6   9   3 ...
0   4   8   3   7   2   6  10 ...
0   5   1   6   2   7   3   8 ...
0   6   3   9   6   3   9   6 ...
0   7   5   3  10   8   6  13 ...
...
		

Crossrefs

Cf. A003991, A004092, A004159 (diagonal), A004164 (digitsum of n^3), A004247, A007953, A055565 (digitsum of n^4), A055566 (digitsum of n^5), A055567 (digitsum of n^6).

Programs

  • Mathematica
    T[n_,k_]:=Total[IntegerDigits[n*k]]; Table[T[n-k,k],{n,0,12},{k,0,n}]//Flatten
  • PARI
    T(n, k) = sumdigits(n*k);

Formula

T(n, k) = A007953(A004247(n, k)).
T(n, 1) = T(1, n) = A007953(n).
T(n, 2) = T(2, n) = A004092(n).
T(n, k) = A007953(A003991(n, k)) for n*k > 0. - Michel Marcus, Jul 13 2020.