cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362072 Antidiagonal sums of A336225.

Original entry on oeis.org

0, 0, 1, 4, 10, 20, 35, 20, 39, 48, 57, 58, 61, 58, 95, 110, 140, 114, 159, 186, 205, 172, 160, 134, 203, 206, 252, 216, 288, 262, 265, 280, 281, 260, 371, 354, 381, 282, 382, 430, 454, 410, 425, 392, 528, 510, 528, 466, 568, 628, 593, 626, 629, 594, 666, 684, 775
Offset: 0

Views

Author

Stefano Spezia, Apr 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    T[i_, j_]:=Total[IntegerDigits[i*j]]; Table[Sum[T[n-j, j],{j,0,n}],{n,0,56}]
  • PARI
    a(n) = sum(k=1, n, sumdigits(k*(n-k))) \\ Andrew Howroyd, Apr 08 2023

Formula

a(n) = Sum_{k=1..n} A007953(k*(n-k)). - Andrew Howroyd, Apr 08 2023

A353109 Array read by antidiagonals: A(n, k) is the digital root of n*k with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Apr 24 2022

Keywords

Examples

			The array begins:
    0, 0, 0, 0, 0, 0, 0, 0, ...
    0, 1, 2, 3, 4, 5, 6, 7, ...
    0, 2, 4, 6, 8, 1, 3, 5, ...
    0, 3, 6, 9, 3, 6, 9, 3, ...
    0, 4, 8, 3, 7, 2, 6, 1, ...
    0, 5, 1, 6, 2, 7, 3, 8, ...
    0, 6, 3, 9, 6, 3, 9, 6, ...
    0, 7, 5, 3, 1, 8, 6, 4, ...
    ...
		

Crossrefs

Cf. A003991, A004247, A010888, A056992 (diagonal), A073636, A139413, A180592, A180593, A180594, A180595, A180596, A180597, A180598, A180599, A303296, A336225, A353128 (antidiagonal sums), A353933, A353974 (partial sum of the main diagonal).

Programs

  • Mathematica
    A[i_,j_]:=If[i*j==0,0,1+Mod[i*j-1,9]];Flatten[Table[A[n-k,k],{n,0,12},{k,0,n}]]
  • PARI
    T(n,k) = if (n && k, (n*k-1)%9+1, 0); \\ Michel Marcus, May 12 2022

Formula

A(n, k) = A010888(A004247(n, k)).
A(n, k) = A010888(A003991(n, k)) for n*k > 0.

A362073 a(n) is the permanent of the n X n symmetric matrix M(n) whose generic element M[i,j] = digsum(i*j).

Original entry on oeis.org

1, 1, 8, 216, 7344, 168183, 7226091, 506792295, 43261224876, 5520748306176, 170835815638728, 19632554202684096, 2228687316428293152, 347514692118635694888, 62201193604462666921968, 8113764691750577654439864, 1557556394182730485102253088, 348394812690307787609428395792
Offset: 0

Views

Author

Stefano Spezia, Apr 08 2023

Keywords

Comments

The matrix M(n) is nonsingular only for n = 1, 5, 6 and 7 with determinant equal respectively to 1, 6561, 59049 and -531441.

Examples

			a(6) = 7226091:
    [1, 2, 3, 4, 5, 6]
    [2, 4, 6, 8, 1, 3]
    [3, 6, 9, 3, 6, 9]
    [4, 8, 3, 7, 2, 6]
    [5, 1, 6, 2, 7, 3]
    [6, 3, 9, 6, 3, 9]
		

Crossrefs

Programs

  • Mathematica
    M[i_, j_]:=Total[IntegerDigits[i*j]]; Join[{1}, Table[Permanent[Table[M[i, j], {i,  n}, {j, n}]], {n, 18}]]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, sumdigits(i*j))); \\ Michel Marcus, Apr 08 2023

Formula

Sum_{i=1..n} M[n-i+1,i] = A362072(n).
Showing 1-3 of 3 results.