cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A353128 Antidiagonal sums of A353109.

Original entry on oeis.org

0, 0, 1, 4, 10, 20, 35, 20, 39, 48, 57, 40, 61, 58, 68, 92, 59, 96, 105, 114, 79, 118, 106, 116, 149, 98, 153, 162, 171, 118, 175, 154, 164, 206, 137, 210, 219, 228, 157, 232, 202, 212, 263, 176, 267, 276, 285, 196, 289, 250, 260, 320, 215, 324, 333, 342, 235, 346
Offset: 0

Views

Author

Stefano Spezia, Apr 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1},{0,0,1,4,10,20,35,20,39,48,57,40,61,58,68,92,59,96,105},58]

Formula

G.f.: x^2*(1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4 + 20*x^5 + 39*x^6 + 48*x^7 + 55*x^9 + 32*x^10 + 41*x^11 + 18*x^12 - 2*x^13 - 19*x^15 + 105*x^17 + x^18 + 3*x^19 + 6*x^20 + 10*x^21 + 15*x^22 + 89*x^23 + 19*x^24 + 9*x^25 - 48*x^26)/((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2).
a(n) = 2*a(n-9) - a(n-18) for n > 18.

A180597 Digital root of 7n.

Original entry on oeis.org

0, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8
Offset: 0

Views

Author

Odimar Fabeny, Sep 10 2010

Keywords

Comments

Period of 9. - Robert G. Wilson v, Sep 20 2010

Crossrefs

Programs

Formula

G.f.: x*(7 + 5*x + 3*x^2 + x^3 + 8*x^4 + 6*x^5 + 4*x^6 + 2*x^7 + 9*x^8)/(1 - x^9). - Stefano Spezia, Apr 21 2022
a(n) = A010888(A008589(n)). - Michel Marcus, Apr 21 2022

Extensions

More terms from Robert G. Wilson v, Sep 20 2010

A180596 Digital root of 6n.

Original entry on oeis.org

0, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3
Offset: 0

Views

Author

Odimar Fabeny, Sep 10 2010

Keywords

Comments

Period of 3. - Robert G. Wilson v, Sep 20 2010

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[6 n - 1, 9] + 1; f[0] = 0; Array[f, 105, 0] (* Robert G. Wilson v, Sep 20 2010 *)
    PadRight[{0},120,{9,6,3}] (* Harvey P. Dale, Dec 18 2012 *)

Formula

G.f.: 3*x*(2 + x + 3*x^2)/(1 - x^3). - Stefano Spezia, Apr 21 2022
a(n) = A010888(A008588(n)). - Michel Marcus, Apr 24 2022

Extensions

More terms from Robert G. Wilson v, Sep 20 2010

A353933 a(n) is the permanent of the n X n symmetric matrix M(n) whose generic element M[i,j] is equal to the digital root of i*j.

Original entry on oeis.org

1, 1, 8, 216, 7344, 168183, 7226091, 295259094, 11801772252, 1673511251940, 65568867621336, 2710049208604776, 202103867012027328, 12881755844526953376, 736186737257150962752, 70484099228399057425344, 5507570249593121504026368, 434305172863416192470350848, 122043063804581668929348667392
Offset: 0

Views

Author

Stefano Spezia, May 11 2022

Keywords

Comments

The matrix M(n) is nonsingular only for n = 1, 5 and 6 with determinant equal respectively to 1, 6561 and 59049.
The rank of M(n) is 1 for 1 <= n <= 3, 3 for n = 4, 5 for n = 5, 6 for 6 <= n <= 8, and 7 for n >= 9. - Jianing Song, Sep 28 2022

Examples

			a(7) = 7226091:
     1, 2, 3, 4, 5, 6, 7
     2, 4, 6, 8, 1, 3, 5
     3, 6, 9, 3, 6, 9, 3
     4, 8, 3, 7, 2, 6, 1
     5, 1, 6, 2, 7, 3, 8
     6, 3, 9, 6, 3, 9, 6
     7, 5, 3, 1, 8, 6, 4
		

Crossrefs

Cf. A003991, A010888, A353109, A353128, A353974 (trace of the matrix M(n)).

Programs

  • Mathematica
    M[i_, j_]:=If[i*j==0, 0, 1+Mod[i*j-1, 9]]; Join[{1},Table[Permanent[Table[M[i, j], {i,  n}, {j, n}]],{n,18}]]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, (i*j-1)%9+1)); \\ Michel Marcus, May 12 2022

Formula

Sum_{i=1..n} M[n-i+1,i] = A353128(n+1).

A353974 a(n) is the n-th partial sum of A056992.

Original entry on oeis.org

0, 1, 5, 14, 21, 28, 37, 41, 42, 51, 52, 56, 65, 72, 79, 88, 92, 93, 102, 103, 107, 116, 123, 130, 139, 143, 144, 153, 154, 158, 167, 174, 181, 190, 194, 195, 204, 205, 209, 218, 225, 232, 241, 245, 246, 255, 256, 260, 269, 276, 283, 292, 296, 297, 306, 307, 311
Offset: 0

Views

Author

Stefano Spezia, May 12 2022

Keywords

Comments

Also the n-th partial sum of the main diagonal of A353109, or equivalently, the trace of the matrix M(n) whose permanent is A353933(n) for n > 0.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(1+4x+9x^2+7x^3+7x^4+9x^5+4x^6+x^7+9x^8)/((1-x)^2(1+x+x^2)(1+x^3+x^6)),{x,0,56}],x]

Formula

G.f.: x*(1 + 4*x + 9*x^2 + 7*x^3 + 7*x^4 + 9*x^5 + 4*x^6 + x^7 + 9*x^8)/((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n > 9.
a(n) ~ 51*n/9.

A357421 a(n) is the hafnian of the 2n X 2n symmetric matrix whose generic element M[i,j] is equal to the digital root of i*j.

Original entry on oeis.org

1, 2, 54, 1377, 55350, 4164534, 217595322, 11974135554, 999599777190, 150051627647010, 11873389098337236
Offset: 0

Views

Author

Stefano Spezia, Sep 27 2022

Keywords

Examples

			a(3) = 1377:
    1, 2, 3, 4, 5, 6;
    2, 4, 6, 8, 1, 3;
    3, 6, 9, 3, 6, 9;
    4, 8, 3, 7, 2, 6;
    5, 1, 6, 2, 7, 3;
    6, 3, 9, 6, 3, 9.
		

Crossrefs

Cf. A003991, A010888, A353109, A353933 (permanent of M(n)), A353974 (trace of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_] := If[i*j == 0, 0, 1 + Mod[i*j - 1, 9]]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0]

Extensions

a(6)-a(10) from Pontus von Brömssen, Oct 15 2023
Showing 1-6 of 6 results.