A353128 Antidiagonal sums of A353109.
0, 0, 1, 4, 10, 20, 35, 20, 39, 48, 57, 40, 61, 58, 68, 92, 59, 96, 105, 114, 79, 118, 106, 116, 149, 98, 153, 162, 171, 118, 175, 154, 164, 206, 137, 210, 219, 228, 157, 232, 202, 212, 263, 176, 267, 276, 285, 196, 289, 250, 260, 320, 215, 324, 333, 342, 235, 346
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1},{0,0,1,4,10,20,35,20,39,48,57,40,61,58,68,92,59,96,105},58]
Formula
G.f.: x^2*(1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4 + 20*x^5 + 39*x^6 + 48*x^7 + 55*x^9 + 32*x^10 + 41*x^11 + 18*x^12 - 2*x^13 - 19*x^15 + 105*x^17 + x^18 + 3*x^19 + 6*x^20 + 10*x^21 + 15*x^22 + 89*x^23 + 19*x^24 + 9*x^25 - 48*x^26)/((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2).
a(n) = 2*a(n-9) - a(n-18) for n > 18.
Comments