cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A353109 Array read by antidiagonals: A(n, k) is the digital root of n*k with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Apr 24 2022

Keywords

Examples

			The array begins:
    0, 0, 0, 0, 0, 0, 0, 0, ...
    0, 1, 2, 3, 4, 5, 6, 7, ...
    0, 2, 4, 6, 8, 1, 3, 5, ...
    0, 3, 6, 9, 3, 6, 9, 3, ...
    0, 4, 8, 3, 7, 2, 6, 1, ...
    0, 5, 1, 6, 2, 7, 3, 8, ...
    0, 6, 3, 9, 6, 3, 9, 6, ...
    0, 7, 5, 3, 1, 8, 6, 4, ...
    ...
		

Crossrefs

Cf. A003991, A004247, A010888, A056992 (diagonal), A073636, A139413, A180592, A180593, A180594, A180595, A180596, A180597, A180598, A180599, A303296, A336225, A353128 (antidiagonal sums), A353933, A353974 (partial sum of the main diagonal).

Programs

  • Mathematica
    A[i_,j_]:=If[i*j==0,0,1+Mod[i*j-1,9]];Flatten[Table[A[n-k,k],{n,0,12},{k,0,n}]]
  • PARI
    T(n,k) = if (n && k, (n*k-1)%9+1, 0); \\ Michel Marcus, May 12 2022

Formula

A(n, k) = A010888(A004247(n, k)).
A(n, k) = A010888(A003991(n, k)) for n*k > 0.

A353128 Antidiagonal sums of A353109.

Original entry on oeis.org

0, 0, 1, 4, 10, 20, 35, 20, 39, 48, 57, 40, 61, 58, 68, 92, 59, 96, 105, 114, 79, 118, 106, 116, 149, 98, 153, 162, 171, 118, 175, 154, 164, 206, 137, 210, 219, 228, 157, 232, 202, 212, 263, 176, 267, 276, 285, 196, 289, 250, 260, 320, 215, 324, 333, 342, 235, 346
Offset: 0

Views

Author

Stefano Spezia, Apr 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1},{0,0,1,4,10,20,35,20,39,48,57,40,61,58,68,92,59,96,105},58]

Formula

G.f.: x^2*(1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4 + 20*x^5 + 39*x^6 + 48*x^7 + 55*x^9 + 32*x^10 + 41*x^11 + 18*x^12 - 2*x^13 - 19*x^15 + 105*x^17 + x^18 + 3*x^19 + 6*x^20 + 10*x^21 + 15*x^22 + 89*x^23 + 19*x^24 + 9*x^25 - 48*x^26)/((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2).
a(n) = 2*a(n-9) - a(n-18) for n > 18.

A353974 a(n) is the n-th partial sum of A056992.

Original entry on oeis.org

0, 1, 5, 14, 21, 28, 37, 41, 42, 51, 52, 56, 65, 72, 79, 88, 92, 93, 102, 103, 107, 116, 123, 130, 139, 143, 144, 153, 154, 158, 167, 174, 181, 190, 194, 195, 204, 205, 209, 218, 225, 232, 241, 245, 246, 255, 256, 260, 269, 276, 283, 292, 296, 297, 306, 307, 311
Offset: 0

Views

Author

Stefano Spezia, May 12 2022

Keywords

Comments

Also the n-th partial sum of the main diagonal of A353109, or equivalently, the trace of the matrix M(n) whose permanent is A353933(n) for n > 0.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(1+4x+9x^2+7x^3+7x^4+9x^5+4x^6+x^7+9x^8)/((1-x)^2(1+x+x^2)(1+x^3+x^6)),{x,0,56}],x]

Formula

G.f.: x*(1 + 4*x + 9*x^2 + 7*x^3 + 7*x^4 + 9*x^5 + 4*x^6 + x^7 + 9*x^8)/((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n > 9.
a(n) ~ 51*n/9.

A362073 a(n) is the permanent of the n X n symmetric matrix M(n) whose generic element M[i,j] = digsum(i*j).

Original entry on oeis.org

1, 1, 8, 216, 7344, 168183, 7226091, 506792295, 43261224876, 5520748306176, 170835815638728, 19632554202684096, 2228687316428293152, 347514692118635694888, 62201193604462666921968, 8113764691750577654439864, 1557556394182730485102253088, 348394812690307787609428395792
Offset: 0

Views

Author

Stefano Spezia, Apr 08 2023

Keywords

Comments

The matrix M(n) is nonsingular only for n = 1, 5, 6 and 7 with determinant equal respectively to 1, 6561, 59049 and -531441.

Examples

			a(6) = 7226091:
    [1, 2, 3, 4, 5, 6]
    [2, 4, 6, 8, 1, 3]
    [3, 6, 9, 3, 6, 9]
    [4, 8, 3, 7, 2, 6]
    [5, 1, 6, 2, 7, 3]
    [6, 3, 9, 6, 3, 9]
		

Crossrefs

Programs

  • Mathematica
    M[i_, j_]:=Total[IntegerDigits[i*j]]; Join[{1}, Table[Permanent[Table[M[i, j], {i,  n}, {j, n}]], {n, 18}]]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, sumdigits(i*j))); \\ Michel Marcus, Apr 08 2023

Formula

Sum_{i=1..n} M[n-i+1,i] = A362072(n).

A362074 a(n) is the rank of the n X n symmetric matrix M(n) whose generic element M[i,j] = digsum(i*j).

Original entry on oeis.org

1, 1, 1, 3, 5, 6, 7, 7, 7, 7, 7, 9, 11, 11, 13, 14, 15, 16, 18, 18, 18, 19, 19, 21, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
Offset: 1

Views

Author

Stefano Spezia, Apr 08 2023

Keywords

Comments

The matrix M(n) is nonsingular (a(n) = n) only for n = 1, 5, 6 and 7 with determinant equal respectively to 1, 6561, 59049 and -531441.

Crossrefs

Cf. A003991, A007953, A353933, A362072, A362073 (permanent).

Programs

  • Mathematica
    M[i_, j_]:=Total[IntegerDigits[i*j]]; Table[MatrixRank[Table[M[i, j], {i,  n}, {j, n}]], {n, 69}]
  • PARI
    a(n)=matrank(matrix(n,n,i,j,sumdigits(i*j))) \\ Andrew Howroyd, Apr 08 2023

A357421 a(n) is the hafnian of the 2n X 2n symmetric matrix whose generic element M[i,j] is equal to the digital root of i*j.

Original entry on oeis.org

1, 2, 54, 1377, 55350, 4164534, 217595322, 11974135554, 999599777190, 150051627647010, 11873389098337236
Offset: 0

Views

Author

Stefano Spezia, Sep 27 2022

Keywords

Examples

			a(3) = 1377:
    1, 2, 3, 4, 5, 6;
    2, 4, 6, 8, 1, 3;
    3, 6, 9, 3, 6, 9;
    4, 8, 3, 7, 2, 6;
    5, 1, 6, 2, 7, 3;
    6, 3, 9, 6, 3, 9.
		

Crossrefs

Cf. A003991, A010888, A353109, A353933 (permanent of M(n)), A353974 (trace of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_] := If[i*j == 0, 0, 1 + Mod[i*j - 1, 9]]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0]

Extensions

a(6)-a(10) from Pontus von Brömssen, Oct 15 2023
Showing 1-6 of 6 results.