cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353109 Array read by antidiagonals: A(n, k) is the digital root of n*k with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Apr 24 2022

Keywords

Examples

			The array begins:
    0, 0, 0, 0, 0, 0, 0, 0, ...
    0, 1, 2, 3, 4, 5, 6, 7, ...
    0, 2, 4, 6, 8, 1, 3, 5, ...
    0, 3, 6, 9, 3, 6, 9, 3, ...
    0, 4, 8, 3, 7, 2, 6, 1, ...
    0, 5, 1, 6, 2, 7, 3, 8, ...
    0, 6, 3, 9, 6, 3, 9, 6, ...
    0, 7, 5, 3, 1, 8, 6, 4, ...
    ...
		

Crossrefs

Cf. A003991, A004247, A010888, A056992 (diagonal), A073636, A139413, A180592, A180593, A180594, A180595, A180596, A180597, A180598, A180599, A303296, A336225, A353128 (antidiagonal sums), A353933, A353974 (partial sum of the main diagonal).

Programs

  • Mathematica
    A[i_,j_]:=If[i*j==0,0,1+Mod[i*j-1,9]];Flatten[Table[A[n-k,k],{n,0,12},{k,0,n}]]
  • PARI
    T(n,k) = if (n && k, (n*k-1)%9+1, 0); \\ Michel Marcus, May 12 2022

Formula

A(n, k) = A010888(A004247(n, k)).
A(n, k) = A010888(A003991(n, k)) for n*k > 0.

A353933 a(n) is the permanent of the n X n symmetric matrix M(n) whose generic element M[i,j] is equal to the digital root of i*j.

Original entry on oeis.org

1, 1, 8, 216, 7344, 168183, 7226091, 295259094, 11801772252, 1673511251940, 65568867621336, 2710049208604776, 202103867012027328, 12881755844526953376, 736186737257150962752, 70484099228399057425344, 5507570249593121504026368, 434305172863416192470350848, 122043063804581668929348667392
Offset: 0

Views

Author

Stefano Spezia, May 11 2022

Keywords

Comments

The matrix M(n) is nonsingular only for n = 1, 5 and 6 with determinant equal respectively to 1, 6561 and 59049.
The rank of M(n) is 1 for 1 <= n <= 3, 3 for n = 4, 5 for n = 5, 6 for 6 <= n <= 8, and 7 for n >= 9. - Jianing Song, Sep 28 2022

Examples

			a(7) = 7226091:
     1, 2, 3, 4, 5, 6, 7
     2, 4, 6, 8, 1, 3, 5
     3, 6, 9, 3, 6, 9, 3
     4, 8, 3, 7, 2, 6, 1
     5, 1, 6, 2, 7, 3, 8
     6, 3, 9, 6, 3, 9, 6
     7, 5, 3, 1, 8, 6, 4
		

Crossrefs

Cf. A003991, A010888, A353109, A353128, A353974 (trace of the matrix M(n)).

Programs

  • Mathematica
    M[i_, j_]:=If[i*j==0, 0, 1+Mod[i*j-1, 9]]; Join[{1},Table[Permanent[Table[M[i, j], {i,  n}, {j, n}]],{n,18}]]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, (i*j-1)%9+1)); \\ Michel Marcus, May 12 2022

Formula

Sum_{i=1..n} M[n-i+1,i] = A353128(n+1).

A357421 a(n) is the hafnian of the 2n X 2n symmetric matrix whose generic element M[i,j] is equal to the digital root of i*j.

Original entry on oeis.org

1, 2, 54, 1377, 55350, 4164534, 217595322, 11974135554, 999599777190, 150051627647010, 11873389098337236
Offset: 0

Views

Author

Stefano Spezia, Sep 27 2022

Keywords

Examples

			a(3) = 1377:
    1, 2, 3, 4, 5, 6;
    2, 4, 6, 8, 1, 3;
    3, 6, 9, 3, 6, 9;
    4, 8, 3, 7, 2, 6;
    5, 1, 6, 2, 7, 3;
    6, 3, 9, 6, 3, 9.
		

Crossrefs

Cf. A003991, A010888, A353109, A353933 (permanent of M(n)), A353974 (trace of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_] := If[i*j == 0, 0, 1 + Mod[i*j - 1, 9]]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0]

Extensions

a(6)-a(10) from Pontus von Brömssen, Oct 15 2023
Showing 1-3 of 3 results.