cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362073 a(n) is the permanent of the n X n symmetric matrix M(n) whose generic element M[i,j] = digsum(i*j).

Original entry on oeis.org

1, 1, 8, 216, 7344, 168183, 7226091, 506792295, 43261224876, 5520748306176, 170835815638728, 19632554202684096, 2228687316428293152, 347514692118635694888, 62201193604462666921968, 8113764691750577654439864, 1557556394182730485102253088, 348394812690307787609428395792
Offset: 0

Views

Author

Stefano Spezia, Apr 08 2023

Keywords

Comments

The matrix M(n) is nonsingular only for n = 1, 5, 6 and 7 with determinant equal respectively to 1, 6561, 59049 and -531441.

Examples

			a(6) = 7226091:
    [1, 2, 3, 4, 5, 6]
    [2, 4, 6, 8, 1, 3]
    [3, 6, 9, 3, 6, 9]
    [4, 8, 3, 7, 2, 6]
    [5, 1, 6, 2, 7, 3]
    [6, 3, 9, 6, 3, 9]
		

Crossrefs

Programs

  • Mathematica
    M[i_, j_]:=Total[IntegerDigits[i*j]]; Join[{1}, Table[Permanent[Table[M[i, j], {i,  n}, {j, n}]], {n, 18}]]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, sumdigits(i*j))); \\ Michel Marcus, Apr 08 2023

Formula

Sum_{i=1..n} M[n-i+1,i] = A362072(n).

A362074 a(n) is the rank of the n X n symmetric matrix M(n) whose generic element M[i,j] = digsum(i*j).

Original entry on oeis.org

1, 1, 1, 3, 5, 6, 7, 7, 7, 7, 7, 9, 11, 11, 13, 14, 15, 16, 18, 18, 18, 19, 19, 21, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
Offset: 1

Views

Author

Stefano Spezia, Apr 08 2023

Keywords

Comments

The matrix M(n) is nonsingular (a(n) = n) only for n = 1, 5, 6 and 7 with determinant equal respectively to 1, 6561, 59049 and -531441.

Crossrefs

Cf. A003991, A007953, A353933, A362072, A362073 (permanent).

Programs

  • Mathematica
    M[i_, j_]:=Total[IntegerDigits[i*j]]; Table[MatrixRank[Table[M[i, j], {i,  n}, {j, n}]], {n, 69}]
  • PARI
    a(n)=matrank(matrix(n,n,i,j,sumdigits(i*j))) \\ Andrew Howroyd, Apr 08 2023
Showing 1-2 of 2 results.