A336237 Numbers of the form ab such that phi(ab) = a*b where ab is the concatenation of a and b.
24, 26, 87, 154, 165, 209, 250, 364, 440, 448, 644, 875, 1240, 1252, 1269, 1320, 1434, 1632, 1640, 1768, 1996, 2440, 2480, 2500, 2656, 2840, 2842, 4040, 4400, 5240, 6040, 6499, 6544, 7240, 7640, 8250, 8360, 8420, 8440, 8727, 8832, 8875, 9640, 10040, 10344, 10840
Offset: 1
Examples
2*4=8 and phi(24)=8 so 24 is a term.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..10000
Programs
-
Magma
a:=[]; for n in [1..11000] do s:=#Intseq(n); if exists(c){i:i in [1..s-1]| ((n mod 10^i)*(n div 10^i)) eq EulerPhi(n)} then Append(~a,n); end if; end for; a; // Marius A. Burtea, Aug 04 2020
-
Mathematica
seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], EulerPhi[n]]]; Select[Range[10, 10^4], seqQ] (* Amiram Eldar, Jul 13 2020 *)
-
PARI
isok(m) = {my(tm=eulerphi(m), d=digits(m)); for (i=1, #d-1, if (fromdigits(vector(i, k, d[k]))*fromdigits(vector(#d-i, k, d[i+k])) == tm, return(1)););}
Comments