cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336634 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(-x) * BesselI(0,2*sqrt(x))^2.

Original entry on oeis.org

1, 1, 0, -4, 14, -18, -168, 1920, -11898, 27398, 582896, -13028904, 183020620, -2061910004, 17930433744, -65293856160, -1965585556410, 69343044999750, -1519055329884960, 26755366818127560, -374375460816570780, 2924763867241325220
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Maple
    rec:= n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3):
    f:= gfun:-rectoproc({rec,a(0)=1,a(1)=1,a(2)=0},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Jul 30 2020
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[-x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
    Table[(-1)^n n! HypergeometricPFQ[{1/2, -n}, {1, 1}, 4], {n, 0, 21}]
    Table[Sum[(-1)^(n - k) Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k)^2 * binomial(2*k,k) * (n-k)!); \\ Michel Marcus, Jul 30 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)^2 * binomial(2*k,k) * (n-k)!.
D-finite with recurrence: n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3). - Robert Israel, Jul 30 2020

A349513 a(n) = n! * Sum_{k=0..n} (2*k)! / (k!)^3.

Original entry on oeis.org

1, 3, 12, 56, 294, 1722, 11256, 82224, 670662, 6084578, 61030536, 672041328, 8067200092, 104884001796, 1468416141744, 22026397243680, 352422956979270, 5991192602253810, 107841475915703880, 2048988077743637520, 40979761692719279220, 860574996085362738060
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(2 k)!/(k!)^3, {k, 0, n}], {n, 0, 21}]
    nmax = 21; CoefficientList[Series[Exp[2 x] BesselI[0, 2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n, (2*k)! / (k!)^3) \\ Andrew Howroyd, Nov 20 2021

Formula

E.g.f.: exp(2*x) * BesselI(0,2*x) / (1 - x).
a(n) = Sum_{k=0..n} binomial(n,k) * A000984(k) * A000142(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A002426(k) * A000522(n-k).
a(n) ~ exp(2) * BesselI(0,2) * n!. - Vaclav Kotesovec, Nov 20 2021
Showing 1-2 of 2 results.