cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A336328 Primitive triples for integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.

Original entry on oeis.org

57, 65, 73, 73, 88, 95, 43, 147, 152, 127, 168, 205, 97, 185, 208, 111, 221, 280, 49, 285, 296, 95, 312, 343, 296, 315, 361, 152, 343, 387, 323, 392, 407, 147, 377, 437, 285, 464, 469, 255, 343, 473, 247, 408, 485, 469, 589, 624, 403, 725, 728, 871, 901, 931
Offset: 1

Views

Author

Bernard Schott, Jul 17 2020

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
The triples are displayed in increasing order of largest side c, and if largest sides coincide then by increasing order of the middle side b; so, each triple (a, b, c) is in increasing order.
If one angle of the triangle, for example C, is >= 2*Pi/3 then the Fermat point F is this vertex C, so, FA + FB + FC becomes CA + CB, while when all angles are < 2*Pi/3, then the Fermat point is inside the triangle (see link Fermat points), this last condition means that c^2 < a^2 + a*b + b^2.
As a < b < c, then FA > FB > FC.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d: 3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2 (see Martin Gardner).
Equivalently: if a point M is inside an equilateral triangle A'B'C' and integer distances to vertices are MA' = a = A072054(n), MB' = b = A072053(n), MC' = c = A072052(n), then the side of this equilateral triangle A'B'C' is equal to d = FA + FB + FC = A061281(n) where F is the Fermat point of the triangle ABC with sides (a,b,c) (see Martin Gardner).
+-----+-----+-----+-----------+-----------+-----------+-----+-------+
| a | b | c | FA | FB | FC | d | a+b+c |
+-----------+-----+-----------+-----------+-----------+-----+-------+
| 57 | 65 | 73 | 325/7 | 264/7 | 195/7 | 112 | 195 |
| 73 | 88 | 95 | 440/7 | 325/7 | 264/7 | 147 | 256 |
| 43 | 147 | 152 | 5016/37 | 1064/37 | 765/37 | 185 | 342 |
| 127 | 168 | 205 | 39360/283 | 27265/283 | 13464/283 | 283 | 500 |
| 97 | 185 | 208 | 14800/91 | 6528/91 | 3515/91 | 273 | 490 |
| 111 | 221 | 280 | 70720/331 | 34200/331 | 4641/331 | 331 | 612 |
| 49 | 285 | 296 | 91200/331 | 12376/331 | 5985/331 | 331 | 630 |
| 95 | 312 | 343 | 3864/13 | 1015/13 | 360/13 | 403 | 750 |
| 296 | 315 | 361 | 9405/43 | 8512/43 | 6120/43 | 559 | 972 |
| 152 | 343 | 387 | 30429/97 | 11520/97 | 5096/97 | 485 | 882 |
.....................................................................
From the previous table, we observe that every FA, FB, FC is a fraction while FA + FB + FC = d is an integer (A336329). Jinyuan Wang has found that the 37th triple is the first for which the common denominator of these fractions is 1 (A351477).

Examples

			The table begins:
   57,  65,  73;
   73,  88,  95;
   43, 147, 152;
  127, 168, 205;
   97, 185, 208;
  111, 221, 280;
   49, 285, 296;
  .............
For first triple (57, 65, 73) and corresponding d = FA + FB + FC = 325/7 + 264/7 + 195/7 = 112, relation gives: 3*(57^4 + 65^4 + 73^4 + 112^4) = (57^2 + 65^2 + 73^2 + 112^2)^2 = 642470409.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.

Crossrefs

Cf. A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), A351801 (FA numerator), A351802 (FB numerator), A351803 (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (other FA + FB + FC).
Cf. A333391 (with isogonic center).

Formula

If FA + FB + FC = d, then
d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))), or,
d^2 = (1/2) * (a^2 + b^2 + c^2) + 2 * S * sqrt(3) where S = area of triangle ABC.

A336332 Largest side, in increasing order, of primitive integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.

Original entry on oeis.org

73, 95, 152, 205, 208, 280, 296, 343, 361, 387, 407, 437, 469, 473, 485, 624, 728, 931, 1016, 1273, 1311, 1313, 1368, 1387, 1443, 1457, 1463, 1469, 1477, 1519, 1560, 1591, 1687, 1895, 2015, 2045, 2045, 2085, 2197, 2231, 2289, 2347, 2363, 2416, 2465, 2553, 2728, 2821, 2923
Offset: 1

Views

Author

Bernard Schott, Jul 20 2020

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
This sequence is increasing because triples are in increasing order of largest side.
For the corresponding primitive triples and miscellaneous properties and references, see A336328.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner): 3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.

Examples

			a(36) = a(37) = 2045 is the smallest largest side that appears twice because:
   (1023, 1387, 2045) is a triple with FA+FB+FC = 2408, and
   (1051, 1744, 2045) is a triple with FA+FB+FC = 2709.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65

Crossrefs

Cf. A336328 (triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), this sequence (largest side), A336333 (perimeter).
Cf. A072052 (largest sides: primitives and multiples), A333391.

Formula

a(n) = A336328(n, 3).

A336333 Perimeter of primitive integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.

Original entry on oeis.org

195, 256, 342, 500, 490, 612, 630, 750, 972, 882, 1122, 961, 1218, 1071, 1140, 1682, 1856, 2703, 2508, 3015, 2990, 3636, 3348, 3572, 3136, 3364, 3640, 3328, 3249, 3362, 3312, 3330, 4530, 4250, 4921, 4455, 4840, 4565, 5054, 4945, 5307, 5655, 5440, 6440, 5746, 6561, 5588
Offset: 1

Views

Author

Bernard Schott, Jul 21 2020

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
For the corresponding primitive triples and miscellaneous properties and references, see A336328.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
This sequence is not increasing. For example, a(4) = 500 for triangle with largest side = 205 while a(5) = 490 for triangle with largest side = 208.

Examples

			a(1) = 195 because the first triple is (57, 65, 73) with corresponding d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112 and 57 + 65 + 73 = 195.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.

Crossrefs

Cf. A336328 (triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A351476, A351477.

Formula

a(n) = A336328(n, 1) + A336328(n, 2) + A336328(n, 3).
a(n) = A336330(n) + A336331(n) + A336332(n).

A336329 When F is the Fermat point of a triangle ABC, this sequence lists the integer total distances FA + FB + FC corresponding to primitive triangles in A336328.

Original entry on oeis.org

112, 147, 185, 283, 273, 331, 331, 403, 559, 485, 645, 520, 691, 592, 637, 965, 1047, 1560, 1415, 1688, 1649, 2093, 1895, 2045, 1687, 1843, 2073, 1839, 1768, 1805, 1729, 1729, 2593, 2337, 2792, 2408, 2709, 2696, 2813, 2704, 2960, 3192, 3007, 3681, 3217, 3752, 2855
Offset: 1

Views

Author

Bernard Schott, Jul 18 2020

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
The triples of sides (a,b,c) with a < b < c are in increasing order of largest side.
For the corresponding primitive triples and miscellaneous properties and references, see A336328.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
For the terms of the data, every FA, FB, FC is a fraction but FA + FB + FC is an integer (see example).
This sequence is not increasing. For example, a(5) = 283 for triangle with largest side = 205 while a(6) = 273 for triangle with largest side = 208. Also, a(6) = a(7) = 331 show that two distinct triangles can have the same minimum possible integer distance FA + FB + FC.

Examples

			For first triple (57, 65, 73), d = 112 is solution of 3*(57^4 + 65^4 + 73^4 + d^4) = (57^2 + 65^2 + 73^2 + d^2)^2, hence, 112 is a term because d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.

Crossrefs

Cf. A336328 (triples), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), A351477.
Cf. A061281 (supersequence with non-primitive terms).

Programs

  • PARI
    lista(nn) = my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4), &d) && issquare((a^2+b^2+c^2+d)/2, &d), print1(d, ", "))))); \\ Jinyuan Wang, Jul 20 2020

Formula

For triangle (a, b, c) whose area is S, and d = FA+FB+FC, then
d = sqrt((1/2)*(a^2+b^2+c^2) + 2*S*sqrt(3)), also,
d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))), or
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.

Extensions

More terms from Jinyuan Wang, Jul 20 2020

A336330 Smallest side of primitive integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.

Original entry on oeis.org

57, 73, 43, 127, 97, 111, 49, 95, 296, 152, 323, 147, 285, 255, 247, 469, 403, 871, 561, 657, 559, 1083, 833, 1057, 485, 507, 1072, 760, 767, 379, 211, 195, 1208, 952, 1443, 1023, 1051, 889, 1240, 1209, 1249, 1423, 1005, 1679, 1568, 1843, 193, 485, 1512
Offset: 1

Views

Author

Bernard Schott, Jul 21 2020

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
For the corresponding primitive triples and miscellaneous properties and references, see A336328.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
This sequence is not increasing. For example, a(2) = 73 for triangle with largest side = 95 while a(3) = 43 for triangle with largest side = 152.

Examples

			a(1) = 57 because the first triple is (57, 65, 73) with corresponding d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112 and the symmetric relation satisfies: 3*(57^4 + 65^4 + 73^4 + 112^4) = (57^2 + 65^2 + 73^2 + 112^2)^2 = 642470409.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.

Crossrefs

Cf. A336328 (triples), A336329 (FA + FB + FC), this sequence (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter).
Cf. A072054 (smallest sides: primitives and multiples).

Formula

a(n) = A336328(n, 1).

A351477 a(n) is the common denominator of FA, FB and FC, where F is the Fermat point of the integer-sided triangle ABC with A < B < C < 2*Pi/3 such that FA + FB + FC = A336329(n).

Original entry on oeis.org

7, 7, 37, 283, 91, 331, 331, 13, 43, 97, 43, 13, 691, 37, 91, 193, 349, 13, 283, 211, 97, 91, 379, 409, 7, 97, 691, 613, 13, 19, 13, 91, 2593, 19, 349, 43, 1, 337, 97, 169, 37, 19, 31, 409, 3217, 67, 571, 169, 241, 43, 67, 157, 4171, 3601, 889, 1591, 811, 1, 139
Offset: 1

Views

Author

Bernard Schott, Feb 12 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
For the corresponding primitive triples, miscellaneous properties and references, see A336328.

Examples

			For 1st triple (57, 65, 73) in A336328, we get A336329(1) = FA + FB + FC = 325/7 + 264/7 + 195/7 = 112, hence a(1) = 7.
For 3rd triple (43, 147, 152) in A336328, we get A336329(3) = FA + FB + FC = 5016/37 + 1064/37 + 765/37 = 185, hence a(3) = 37.
		

Crossrefs

Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter).
Cf. A351476.

Formula

a(n) = A351476(n)/A336329(n).
a(n) is the common denominator of fractions FA, FB, FC when FA = sqrt(((2*b*c)^2 - (b^2+c^2-d^2)^2)/3) / d, FB = sqrt(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3) / d, FC = sqrt(((2*a*b)^2 - (a^2+b^2-d^2)^2)/3) / d, with a = (A336328(n,1), b = (A336328(n,2), c = (A336328(n,3)) and d = A336329(n) (formulas FA, FB, FC from Jinyuan Wang, Feb 17 2022).

Extensions

More terms from Jinyuan Wang, Feb 17 2022

A351476 If F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, this sequence gives the sum FA + FB + FC when gcd(a, b, c) = A351477(n).

Original entry on oeis.org

784, 1029, 6845, 80089, 24843, 109561, 109561, 5239, 24037, 47045, 27735, 6760, 477481, 21904, 57967, 186245, 365403, 20280, 400445, 356168, 159953, 190463, 718205, 836405, 11809, 178771, 1432443, 1127307, 22984, 34295, 22477, 157339, 6723649, 44403, 974408
Offset: 1

Views

Author

Bernard Schott, Feb 12 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
Differs from A336329 where ABC is a primitive integer-sided triangle with A < B < C < 2*Pi/3 and only FA+FB+FC is an integer; in fact, terms of A336329 are the sum of 3 fractions of the form FA = p/t, FB = q/t, FC = r/t but (p+q+r)/t is an integer. Here, FA, FB and FC are all integers and the sums FA+FB+FC are displayed according to same order as in A336329. The corresponding common denominators t of the fractions (p/t, q/t, r/t) are in A351477.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
=> d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))).

Examples

			a(1) = FA + FB + FC = 325 + 264 + 195 = 784, corresponding to first triple (399, 455, 511) whose gcd = 7.
a(6) = FA + FB + FC = 70720 + 34200 + 4641 = 109561, corresponding to triple (36741, 73151, 92680) whose gcd = 331.
a(7) = FA + FB + FC = 91200 + 12376 + 8985 = 109561, corresponding to triple (16219, 94335, 97976) whose gcd = 331.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.

Crossrefs

Programs

  • PARI
    lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); my(s = numerator(sqrtint(((2*b*c)^2 - (b^2+c^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*b)^2 - (a^2+b^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3)/d)); print1(s, ", ");););););} \\ Michel Marcus, Mar 02 2022

Formula

a(n) = A336329(n) * A351477(n).
If FA + FB + FC = d, then
d^2 = (1/2) * (a^2 + b^2 + c^2) + 2 * S * sqrt(3) where S = area of triangle ABC.

Extensions

More terms from Jinyuan Wang, Feb 17 2022

A351801 a(n) = A351477(n) * FA where F is the Fermat point of a primitive integer-sided triangle ABC with A < B < C < 2*Pi/3 and FA + FB + FC = A336329(n).

Original entry on oeis.org

325, 440, 5016, 39360, 14800, 70720, 91200, 3864, 9405, 30429, 11704, 4669, 250096, 11704, 32640, 81840, 203000, 7208, 218120, 199325, 99360, 76760, 359352, 342912, 8184, 122200, 595595, 621387, 12600, 26040, 19320, 137344, 3108105, 24955, 409640, 58400, 1520
Offset: 1

Views

Author

Bernard Schott, Feb 19 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
For the corresponding primitive triples, miscellaneous properties and references, see A336328.
Equivalently, a(n) is the numerator of the fraction FA = a(n) / A351477(n).
Also, if F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, when FA + FB + FC = d = A351476(n), we have FA = a(n).
FA is the largest length with FC < FB < FA (remember a < b < c).

Examples

			For the 1st triple in A336328, i.e., (57, 65, 73), we get A336329(1) = FA + FB + FC = 325/7 + 264/7 + 195/7 = 112, hence A351477(1) = 7 and a(1) = 325.
		

Crossrefs

Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), this sequence (FA numerator), A351802 (FB numerator), A351803 (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (other 'FA + FB + FC').

Programs

  • PARI
    lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); print1(numerator(sqrtint(((2*b*c)^2 - (b^2 + c^2 - d^2)^2)/3)/d), ", ");););););} \\ Michel Marcus, Mar 02 2022

Formula

a(n) = A351476(n) - A351802(n) - A351803(n).
FA = sqrt(((2*b*c)^2 - (b^2 + c^2 - d^2)^2)/3) / d. - Jinyuan Wang, Feb 19 2022

Extensions

More terms from Jinyuan Wang, Feb 19 2022

A351802 a(n) = A351477(n) * FB where F is the Fermat point of a primitive integer-sided triangle ABC with A < B < C < 2*Pi/3 and FA + FB + FC = A336329(n).

Original entry on oeis.org

264, 325, 1064, 27265, 6528, 34200, 12376, 1015, 8512, 11520, 8415, 1656, 116025, 8415, 17575, 56448, 81928, 6765, 107712, 106128, 43953, 60903, 235008, 311885, 3105, 32571, 571648, 411320, 9499, 4991, 1800, 13875, 1894144, 16320, 402375, 42735, 805, 218925
Offset: 1

Views

Author

Bernard Schott, Feb 19 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
For the corresponding primitive triples, miscellaneous properties and references, see A336328.
Equivalently, a(n) is the numerator of the fraction FB = a(n) / A351477(n).
Also, if F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, when FA + FB + FC = d = A351476(n), we have FB = a(n).
FB is the middle length with FC < FB < FA (remember a < b < c).

Examples

			For the 2nd triple in A336328, i.e., (73, 88, 95), we get A336329(2) = FA + FB + FC = 440/7 + 325/7 + 264/7 = 147, hence A351477(2) = 7 and a(2) = 325.
		

Crossrefs

Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), A351801 (FA numerator), this sequence (FB numerator), A351803 (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (other 'FA + FB + FC').

Programs

  • PARI
    lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); print1(numerator(sqrtint(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3)/d), ", ");););););} \\ Michel Marcus, Mar 01 2022

Formula

a(n) = A351476(n) - A351801(n) - A351803(n).
FB = sqrt(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3) / d. - Jinyuan Wang, Feb 19 2022

Extensions

More terms from Jinyuan Wang, Feb 19 2022

A351803 a(n) = A351477(n) * FC where F is the Fermat point of a primitive integer-sided triangle ABC with A < B < C < 2*Pi/3 and FA + FB + FC = A336329(n).

Original entry on oeis.org

195, 264, 765, 13464, 3515, 4641, 5985, 360, 6120, 5096, 7616, 435, 111360, 1785, 7752, 47957, 80475, 6307, 74613, 50715, 16640, 52800, 123845, 181608, 520, 24000, 265200, 94600, 885, 3264, 1357, 6120, 1721400, 3128, 162393, 2409, 384, 122507, 27720, 22575, 12383
Offset: 1

Views

Author

Bernard Schott, Feb 19 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
For the corresponding primitive triples, miscellaneous properties and references, see A336328.
Equivalently, a(n) is the numerator of the fraction FC = a(n) / A351477(n).
Also, if F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, when FA + FB + FC = d = A351476(n), we have FC = a(n).
FC is the smallest length with FC < FB < FA (remember a < b < c).

Examples

			For the 3rd triple in A336328, i.e., (43, 147, 152), we get A336329(3) = FA + FB + FC = 5016/37 + 1064/37 + 765/37 = 185, hence A351477(3) = 37 and a(3) = 765.
		

Crossrefs

Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), A351801 (FA numerator), A351802 (FB numerator), this sequence (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (FA + FB + FC other).

Programs

  • PARI
    lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); print1(numerator(sqrtint(((2*a*b)^2 - (a^2 + b^2 - d^2)^2)/3)/d), ", ");););););} \\ Michel Marcus, Mar 02 2022

Formula

a(n) = A351476(n) - A351801(n) - A351802(n).
FC = sqrt(((2*a*b)^2 - (a^2 + b^2 - d^2)^2)/3) / d. - Jinyuan Wang, Feb 19 2022

Extensions

More terms from Jinyuan Wang, Feb 19 2022
Showing 1-10 of 10 results.