A336409 Distance from prime(n) to the nearest odd composite that is < prime(n).
2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4
Offset: 5
Keywords
Examples
Beginning with prime(5) = 11: 11-9 = 2, 13-9 = 4, 17-15 = 2, 19-15 = 4.
Programs
-
Maple
A336409 := proc(n) local p; p := ithprime(n) ; for a from p-2 by -2 do if not isprime(a) then return p-a ; end if; end do: end proc: seq(A336409(n),n=5..100) ; # R. J. Mathar, Oct 02 2020 # second Maple program: a:= n-> `if`(isprime(ithprime(n)-2), 4, 2): seq(a(n), n=5..100); # Alois P. Heinz, Oct 02 2020
-
Mathematica
z = 5000; d = Select[Range[2, z], ! PrimeQ@# && OddQ@# &]; (* A014076 *) f[n_] := Select[d, # < Prime[n] &]; t = Table[Prime[n] - Max[f[n]], {n, 5, 300}] (* A336409 *) Flatten[Position[t, 2]] (* A336410 *) Flatten[Position[t, 4]] (* A336411 *)
Formula
a(n) = 2 * A175191(n-1). - Alois P. Heinz, Oct 02 2020
a(n) = 2 * (A062301(n) + 1). - Hugo Pfoertner, Oct 02 2020
Comments