A336416 Number of perfect-power divisors of n!.
1, 1, 1, 1, 3, 3, 7, 7, 11, 18, 36, 36, 47, 47, 84, 122, 166, 166, 221, 221, 346, 416, 717, 717, 1001, 1360, 2513, 2942, 4652, 4652, 5675, 5675, 6507, 6980, 13892, 17212, 20408, 20408, 39869, 45329, 51018, 51018, 68758, 68758, 105573, 138617, 284718, 284718, 338126, 421126
Offset: 0
Keywords
Examples
The a(1) = 0 through a(9) = 18 divisors: 1: 1 2: 1 6: 1 24: 1,4,8 120: 1,4,8 720: 1,4,8,9,16,36,144 5040: 1,4,8,9,16,36,144 40320: 1,4,8,9,16,32,36,64,128,144,576 362880: 1,4,8,9,16,27,32,36,64,81,128,144,216,324,576,1296,1728,5184
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999
Crossrefs
Programs
-
Mathematica
perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1]; Table[Length[Select[Divisors[n!],perpouQ]],{n,0,15}]
-
PARI
a(n) = sumdiv(n!, d, (d==1) || ispower(d)); \\ Michel Marcus, Aug 19 2020
-
PARI
addhelp(val, "exponent of prime p in n!") val(n, p) = my(r=0); while(n, r+=n\=p);r a(n) = {if(n<=3, return(1)); my(pr = primes(primepi(n\2)), v = vector(#pr, i, val(n, pr[i])), res = 1, cv); for(i = 2, v[1], if(issquarefree(i), cv = v\i; res-=(prod(i = 1, #cv, cv[i]+1)-1)*(-1)^omega(i) ) ); res } \\ David A. Corneth, Aug 19 2020
Formula
a(p) = a(p-1) for prime p. - David A. Corneth, Aug 19 2020
Extensions
a(26)-a(34) from Jinyuan Wang, Aug 19 2020
a(35)-a(49) from David A. Corneth, Aug 19 2020
Comments