A336419 Number of divisors d of the n-th superprimorial A006939(n) with distinct prime exponents such that the quotient A006939(n)/d also has distinct prime exponents.
1, 2, 4, 10, 24, 64, 184, 536, 1608, 5104, 16448, 55136, 187136, 658624, 2339648, 8618208, 31884640, 121733120, 468209408, 1849540416, 7342849216
Offset: 0
Examples
The a(0) = 1 through a(3) = 10 divisors: 1 2 12 360 ----------------- 1 1 1 1 2 3 5 4 8 12 9 18 20 40 45 72 360
Crossrefs
A000110 shifted once to the left dominates this sequence.
A006939 lists superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
Programs
-
Mathematica
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; Table[Length[Select[Divisors[chern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&]],{n,0,6}]
-
PARI
recurse(n,k,b,d)={if(k>n, 1, sum(i=0, k, if((i==0||!bittest(b,i)) && (i==k||!bittest(d,k-i)), self()(n, k+1, bitor(b, 1<Andrew Howroyd, Aug 30 2020
Extensions
a(10)-a(20) from Andrew Howroyd, Aug 31 2020
Comments