cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A006939 Chernoff sequence: a(n) = Product_{k=1..n} prime(k)^(n-k+1).

Original entry on oeis.org

1, 2, 12, 360, 75600, 174636000, 5244319080000, 2677277333530800000, 25968760179275365452000000, 5793445238736255798985527240000000, 37481813439427687898244906452608585200000000, 7517370874372838151564668004911177464757864076000000000, 55784440720968513813368002533861454979548176771615744085560000000000
Offset: 0

Views

Author

Keywords

Comments

Product of first n primorials: a(n) = Product_{i=1..n} A002110(i).
Superprimorials, from primorials by analogy with superfactorials.
Smallest number k with n distinct exponents in its prime factorization, i.e., A071625(k) = n.
Subsequence of A130091. - Reinhard Zumkeller, May 06 2007
Hankel transform of A171448. - Paul Barry, Dec 09 2009
This might be a good place to explain the name "Chernoff sequence" since his name does not appear in the References or Links as of Mar 22 2014. - Jonathan Sondow, Mar 22 2014
Pickover (1992) named this sequence after Paul Chernoff of California, who contributed this sequence to his book. He was possibly referring to American mathematician Paul Robert Chernoff (1942 - 2017), a professor at the University of California. - Amiram Eldar, Jul 27 2020

Examples

			a(4) = 360 because 2^3 * 3^2 * 5 = 1 * 2 * 6 * 30 = 360.
a(5) = 75600 because 2^4 * 3^3 * 5^2 * 7 = 1 * 2 * 6 * 30 * 210 = 75600.
		

References

  • Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 351.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James K. Strayer, Elementary number theory, Waveland Press, Inc., Long Grove, IL, 1994. See p. 37.

Crossrefs

Cf. A000178 (product of first n factorials), A007489 (sum of first n factorials), A060389 (sum of first n primorials).
A000142 counts divisors of superprimorials.
A000325 counts uniform divisors of superprimorials.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 is a sister-sequence.
A118914 has row a(n) equal to {1..n}.
A124010 has row a(n) equal to {n..1}.
A130091 lists numbers with distinct prime multiplicities.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
A336426 gives non-products of superprimorials.

Programs

  • Haskell
    a006939 n = a006939_list !! n
    a006939_list = scanl1 (*) a002110_list -- Reinhard Zumkeller, Jul 21 2012
    
  • Magma
    [1] cat [(&*[NthPrime(k)^(n-k+1): k in [1..n]]): n in [1..15]]; // G. C. Greubel, Oct 14 2018
    
  • Maple
    a := []; printlevel := -1; for k from 0 to 20 do a := [op(a),product(ithprime(i)^(k-i+1),i=1..k)] od; print(a);
  • Mathematica
    Rest[FoldList[Times,1,FoldList[Times,1,Prime[Range[15]]]]] (* Harvey P. Dale, Jul 07 2011 *)
    Table[Times@@Table[Prime[i]^(n - i + 1), {i, n}], {n, 12}] (* Alonso del Arte, Sep 30 2011 *)
  • PARI
    a(n)=prod(k=1,n,prime(k)^(n-k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from math import prod
    from sympy import prime
    def A006939(n): return prod(prime(k)**(n-k+1) for k in range(1,n+1)) # Chai Wah Wu, Aug 12 2025

Formula

a(n) = m(1)*m(2)*m(3)*...*m(n), where m(n) = n-th primorial number. - N. J. A. Sloane, Feb 20 2005
a(0) = 1, a(n) = a(n - 1)p(n)#, where p(n)# is the n-th primorial A002110(n) (the product of the first n primes). - Alonso del Arte, Sep 30 2011
log a(n) = n^2(log n + log log n - 3/2 + o(1))/2. - Charles R Greathouse IV, Mar 14 2011
A181796(a(n)) = A000110(n+1). It would be interesting to have a bijective proof of this theorem, which is stated at A181796 without proof. See also A336420. - Gus Wiseman, Aug 03 2020

Extensions

Corrected and extended by Labos Elemer, May 30 2001

A181818 Products of superprimorials (A006939).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 360, 384, 512, 576, 720, 768, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 11520, 12288, 13824, 16384, 17280, 18432, 20736, 23040, 24576, 27648, 32768
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

Sorted list of positive integers with a factorization Product p(i)^e(i) such that (e(1) - e(2)) >= (e(2) - e(3)) >= ... >= (e(k-1) - e(k)) >= e(k), with k = A001221(n), and p(k) = A006530(n) = A000040(k), i.e., the prime factors p(1) .. p(k) must be consecutive primes from 2 onward. - Comment clarified by Antti Karttunen, Apr 28 2022
Subsequence of A025487. A025487(n) belongs to this sequence iff A181815(n) is a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A182863. - Matthew Vandermast, May 20 2012

Examples

			2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence.
From _Gus Wiseman_, Aug 12 2020 (Start):
The sequence of factorizations (which are unique) begins:
    1 = empty product
    2 = 2
    4 = 2*2
    8 = 2*2*2
   12 = 12
   16 = 2*2*2*2
   24 = 2*12
   32 = 2*2*2*2*2
   48 = 2*2*12
   64 = 2*2*2*2*2*2
   96 = 2*2*2*12
  128 = 2*2*2*2*2*2*2
  144 = 12*12
  192 = 2*2*2*2*12
  256 = 2*2*2*2*2*2*2*2
(End)
		

Crossrefs

A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763.
Subsequence of A025487, A055932, A087980, A130091, A181824.
A001013 is the version for factorials.
A336426 is the complement.
A336496 is the version for superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A317829 counts factorizations of superprimorials.
Cf. A022915, A076954, A304686, A325368, A336419, A336420, A336421, A353518 (characteristic function).

Programs

  • Mathematica
    Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); };
    A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1)));
    isA181818(n) = A353518(n); \\ Antti Karttunen, Apr 28 2022

A336500 Number of divisors d|n with distinct prime multiplicities such that the quotient n/d also has distinct prime multiplicities.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 6, 3, 2, 4, 4, 2, 0, 2, 6, 2, 2, 2, 6, 2, 2, 2, 6, 2, 0, 2, 4, 4, 2, 2, 8, 3, 4, 2, 4, 2, 6, 2, 6, 2, 2, 2, 4, 2, 2, 4, 7, 2, 0, 2, 4, 2, 0, 2, 8, 2, 2, 4, 4, 2, 0, 2, 8, 5, 2, 2, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(1) = 1 through a(16) = 5 divisors:
  1  1  1  1  1  2  1  1  1  2  1  1  1  2  3  1
     2  3  2  5  3  7  2  3  5 11  3 13  7  5  2
           4           4  9        4           4
                       8          12           8
                                              16
		

Crossrefs

A336419 is the version for superprimorials.
A336568 gives positions of zeros.
A336869 is the restriction to factorials.
A007425 counts divisors of divisors.
A056924 counts divisors greater than their quotient.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime multiplicities.
A336424 counts factorizations using A130091.
A336422 counts divisible pairs of divisors, both in A130091.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336423 counts chains in A130091, with maximal version A336569.
A336568 gives numbers not a product of two elements of A130091.
A336571 counts divisor sets using A130091, with maximal version A336570.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[n/#]&]],{n,25}]

A008278 Reflected triangle of Stirling numbers of 2nd kind, S(n,n-k+1), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 15, 1, 1, 15, 65, 90, 31, 1, 1, 21, 140, 350, 301, 63, 1, 1, 28, 266, 1050, 1701, 966, 127, 1, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1
Offset: 1

Views

Author

Keywords

Comments

The n-th row also gives the coefficients of the sigma polynomial of the empty graph \bar K_n. - Eric W. Weisstein, Apr 07 2017
The n-th row also gives the coefficients of the independence polynomial of the (n-1)-triangular honeycomb bishop graph. - Eric W. Weisstein, Apr 03 2018
From Gus Wiseman, Aug 11 2020: (Start)
Conjecture: also the number of divisors of the superprimorial A006939(n - 1) that have 0 <= k <= n distinct prime factors, all appearing with distinct multiplicities. For example, row n = 4 counts the following divisors of 360:
1 2 12 360
3 18
4 20
5 24
8 40
9 45
72
Equivalently, T(n,k) is the number of length-n vectors 0 <= v_i <= i with k nonzero values, all of which are distinct.
Crossrefs:
A006939 lists superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336420 is the version counting all prime factors, not just distinct ones.
(End)
From Leonidas Liponis, Aug 26 2024: (Start)
It appears that this sequence is related to the combinatorial form of Faà di Bruno's formula. Specifically, the number of terms for the n-th derivative of a composite function y = f(g(x)) matches the number of partitions of n.
For example, consider the case where g(x) = e^x, in which all derivatives of g(x) are equal. The first 5 rows of A008278 appear as the factors of derivatives of f(x), highlighted here in brackets:
dy/dx = [ 1 ] * f'(e^x) * e^x
d^2y/dx^2 = [ 1 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
d^3y/dx^3 = [ 1 ] * f'''(e^x) * e^{3x} + [ 3 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
d^4y/dx^4 = [ 1 ] * f''''(e^x) * e^{4x} + [ 6 ] * f'''(e^x) * e^{3x} + [ 7 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
d^5y/dx^5 = [ 1 ] * f'''''(e^x) * e^{5x} + [ 10 ] * f''''(e^x) * e^{4x} + [ 25 ] * f'''(e^x) * e^{3x} + [ 15 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
This pattern is observed in Mathematica for the first 10 cases, using the code below.
(End)

Examples

			The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   7,    1;
  1, 10,  25,   15,    1;
  1, 15,  65,   90,   31,    1;
  1, 21, 140,  350,  301,   63,    1;
  1, 28, 266, 1050, 1701,  966,  127,   1;
  1, 36, 462, 2646, 6951, 7770, 3025, 255, 1;
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994.

Crossrefs

See A008277 and A048993, which are the main entries for this triangle of numbers.

Programs

  • Haskell
    a008278 n k = a008278_tabl !! (n-1) !! (k-1)
    a008278_row n = a008278_tabl !! (n-1)
    a008278_tabl = iterate st2 [1] where
      st2 row = zipWith (+) ([0] ++ row') (row ++ [0])
                where row' = reverse $ zipWith (*) [1..] $ reverse row
    -- Reinhard Zumkeller, Jun 22 2013
    
  • Mathematica
    rows = 10; Flatten[Table[StirlingS2[n, k], {n, 1, rows}, {k, n, 1, -1}]] (* Jean-François Alcover, Nov 17 2011, *)
    Table[CoefficientList[x^n BellB[n, 1/x], x], {n, 10}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
    n = 5; Grid[Prepend[Transpose[{Range[1, n], Table[D[f[Exp[x]], {x, i}], {i, 1, n}]}], {"Order","Derivative"}], Frame -> All, Spacings -> {2, 1}] (* Leonidas Liponis, Aug 27 2024 *)
  • PARI
    for(n=1,10,for(k=1,n,print1(stirling(n,n-k+1,2),", "))) \\ Hugo Pfoertner, Aug 30 2020

Formula

T(n, k)=0 if n < k, T(n, 0)=0, T(1, 1)=1, T(n, k) = (n-k+1)*T(n-1, k-1) + T(n-1, k) otherwise.
O.g.f. for the k-th column: 1/(1-x) if k=1 and A(k,x):=((x^k)/(1-x)^(2*k+1))*Sum_{m=0..k-1} A008517(k,m+1)*x^m if k >= 2. A008517 is the second-order Eulerian triangle. Cf. p. 257, eq. (6.43) of the R. L. Graham et al. book. - Wolfdieter Lang, Oct 14 2005
E.g.f. for the k-th column (with offset n=0): E(k,x):=exp(x)*Sum_{m=0..k-1} A112493(k-1,m)*(x^(k-1+m))/(k-1+m)! if k >= 1. - Wolfdieter Lang, Oct 14 2005
a(n) = abs(A213735(n-1)). - Hugo Pfoertner, Sep 07 2020

Extensions

Name edited by Gus Wiseman, Aug 11 2020

A336420 Irregular triangle read by rows where T(n,k) is the number of divisors of the n-th superprimorial A006939(n) with distinct prime multiplicities and k prime factors counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 5, 2, 1, 1, 1, 4, 3, 11, 7, 7, 10, 5, 2, 1, 1, 1, 5, 4, 19, 14, 18, 37, 25, 23, 15, 23, 10, 5, 2, 1, 1, 1, 6, 5, 29, 23, 33, 87, 70, 78, 74, 129, 84, 81, 49, 39, 47, 23, 10, 5, 2, 1, 1, 1, 7, 6, 41, 34, 52, 165, 144, 183, 196, 424, 317, 376, 325, 299, 431, 304, 261, 172, 129, 81, 103, 47, 23, 10, 5, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
T(n,k) is also the number of length-n vectors 0 <= v_i <= i summing to k whose nonzero values are all distinct.

Examples

			Triangle begins:
  1
  1  1
  1  2  1  1
  1  3  2  5  2  1  1
  1  4  3 11  7  7 10  5  2  1  1
  1  5  4 19 14 18 37 25 23 15 23 10  5  2  1  1
The divisors counted in row n = 4 are:
  1  2  4     8   16   48   144   432  2160  10800  75600
     3  9    12   24   72   360   720  3024
     5  25   18   40   80   400  1008
     7       20   54  108   504  1200
             27   56  112   540  2800
             28  135  200   600
             45  189  675   756
             50            1350
             63            1400
             75            4725
            175
		

Crossrefs

A000110 gives row sums.
A000124 gives row lengths.
A000142 counts divisors of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008278 is the version counting only distinct prime factors.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime multiplicities.
A146291 counts divisors by bigomega.
A181796 counts divisors with distinct prime multiplicities.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
A336498 counts divisors of factorials by bigomega.
A336499 uses factorials instead superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    Table[Length[Select[Divisors[chern[n]],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,5},{k,0,n*(n+1)/2}]

A336417 Number of perfect-power divisors of superprimorials A006939.

Original entry on oeis.org

1, 1, 2, 5, 15, 44, 169, 652, 3106, 15286, 89933, 532476, 3698650, 25749335, 204947216, 1636097441, 14693641859, 132055603656, 1319433514898, 13186485900967, 144978145009105, 1594375302986404, 19128405558986057, 229508085926717076, 2983342885319348522
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2020

Keywords

Comments

A number is a perfect power iff it is 1 or its prime exponents (signature) are not relatively prime.
The n-th superprimorial number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(0) = 1 through a(4) = 15 divisors:
  1  2  12  360  75600
-------------------------
  1  1   1    1      1
         4    4      4
              8      8
              9      9
             36     16
                    25
                    27
                    36
                   100
                   144
                   216
                   225
                   400
                   900
                  3600
		

Crossrefs

A000325 is the uniform version.
A076954 can be used instead of A006939.
A336416 gives the same for factorials instead of superprimorials.
A000217 counts prime power divisors of superprimorials.
A000961 gives prime powers.
A001597 gives perfect powers, with complement A007916.
A006939 gives superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A091050 counts perfect power divisors.
A181818 gives products of superprimorials.
A294068 counts factorizations using perfect powers.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1];
    Table[Length[Select[Divisors[chern[n]],perpouQ]],{n,0,5}]
  • PARI
    a(n) = {1 + sum(k=2, n, moebius(k)*(1 - prod(i=1, n, 1 + i\k)))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = A091050(A006939(n)).
a(n) = 1 + Sum_{k=2..n} mu(k)*(1 - Product_{i=1..n} 1 + floor(i/k)). - Andrew Howroyd, Aug 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 30 2020

A336426 Numbers that cannot be written as a product of superprimorials {2, 12, 360, 75600, ...}.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			We have 288 = 2*12*12 so 288 is not in the sequence.
		

Crossrefs

A181818 is the complement.
A336497 is the version for superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Array[chern,30],#]=={}&]

A336422 Number of ways to choose a divisor of a divisor of n, both having distinct prime exponents.

Original entry on oeis.org

1, 3, 3, 6, 3, 5, 3, 10, 6, 5, 3, 13, 3, 5, 5, 15, 3, 13, 3, 13, 5, 5, 3, 24, 6, 5, 10, 13, 3, 7, 3, 21, 5, 5, 5, 21, 3, 5, 5, 24, 3, 7, 3, 13, 13, 5, 3, 38, 6, 13, 5, 13, 3, 24, 5, 24, 5, 5, 3, 20, 3, 5, 13, 28, 5, 7, 3, 13, 5, 7, 3, 42, 3, 5, 13, 13, 5, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2020

Keywords

Comments

A number has distinct prime exponents iff its prime signature is strict.

Examples

			The a(n) ways for n = 1, 2, 4, 6, 8, 12, 30, 210:
  1/1/1  2/1/1  4/1/1  6/1/1  8/1/1  12/1/1    30/1/1  210/1/1
         2/2/1  4/2/1  6/2/1  8/2/1  12/2/1    30/2/1  210/2/1
         2/2/2  4/2/2  6/2/2  8/2/2  12/2/2    30/2/2  210/2/2
                4/4/1  6/3/1  8/4/1  12/3/1    30/3/1  210/3/1
                4/4/2  6/3/3  8/4/2  12/3/3    30/3/3  210/3/3
                4/4/4         8/4/4  12/4/1    30/5/1  210/5/1
                              8/8/1  12/4/2    30/5/5  210/5/5
                              8/8/2  12/4/4            210/7/1
                              8/8/4  12/12/1           210/7/7
                              8/8/8  12/12/2
                                     12/12/3
                                     12/12/4
                                     12/12/12
		

Crossrefs

A336421 is the case of superprimorials.
A007425 counts divisors of divisors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor with distinct prime exponents.
A336500 counts divisors with quotient also having distinct prime exponents.
A336568 = not a product of two numbers with distinct prime exponents.

Programs

  • Mathematica
    strdivs[n_]:=Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&];
    Table[Sum[Length[strdivs[d]],{d,strdivs[n]}],{n,30}]

A095149 Triangle read by rows: Aitken's array (A011971) but with a leading diagonal before it given by the Bell numbers (A000110), 1, 1, 2, 5, 15, 52, ...

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 7, 10, 15, 52, 15, 20, 27, 37, 52, 203, 52, 67, 87, 114, 151, 203, 877, 203, 255, 322, 409, 523, 674, 877, 4140, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 21147, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0

Views

Author

Gary W. Adamson, May 30 2004

Keywords

Comments

Or, prefix Aitken's array (A011971) with a leading diagonal of 0's and take the differences of each row to get the new triangle.
With offset 1, triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} in which k is the largest entry in the block containing 1 (1 <= k <= n). - Emeric Deutsch, Oct 29 2006
Row term sums = the Bell numbers starting with A000110(1): 1, 2, 5, 15, ...
The k-th term in the n-th row is the number of permutations of length n starting with k and avoiding the dashed pattern 23-1. Equivalently, the number of permutations of length n ending with k and avoiding 1-32. - Andrew Baxter, Jun 13 2011
From Gus Wiseman, Aug 11 2020: (Start)
Conjecture: Also the number of divisors d with distinct prime multiplicities of the superprimorial A006939(n) that are of the form d = m * 2^k where m is odd. For example, row n = 4 counts the following divisors:
1 2 4 8 16
3 18 12 24 48
5 50 20 40 80
7 54 28 56 112
9 1350 108 72 144
25 540 200 400
27 756 360 432
45 504 720
63 600 1008
75 1400 1200
135 2160
175 2800
189 3024
675 10800
4725 75600
Equivalently, T(n,k) is the number of length-n vectors 0 <= v_i <= i whose nonzero values are distinct and such that v_n = k.
Crossrefs:
A008278 is the version counted by omega A001221.
A336420 is the version counted by Omega A001222.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by Omega.
A022915 counts permutations of prime indices of superprimorials.
A098859 counts partitions with distinct multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
(End)

Examples

			Triangle starts:
   1;
   1,  1;
   2,  1,  2;
   5,  2,  3,  5;
  15,  5,  7, 10, 15;
  52, 15, 20, 27, 37, 52;
From _Gus Wiseman_, Aug 11 2020: (Start)
Row n = 3 counts the following set partitions (described in Emeric Deutsch's comment above):
  {1}{234}      {12}{34}    {123}{4}    {1234}
  {1}{2}{34}    {12}{3}{4}  {13}{24}    {124}{3}
  {1}{23}{4}                {13}{2}{4}  {134}{2}
  {1}{24}{3}                            {14}{23}
  {1}{2}{3}{4}                          {14}{2}{3}
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=proc(n,k) if k=1 then bell(n-1) elif k=2 and n>=2 then bell(n-2) elif k<=n then add(binomial(k-2,i)*bell(n-2-i),i=0..k-2) else 0 fi end: matrix(8,8,T): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    Q[1]:=t*s: for n from 2 to 11 do Q[n]:=expand(t^n*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)-Q[n-1]+s*Q[n-1]) od: for n from 1 to 11 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Oct 29 2006
    A011971 := proc(n,k) option remember ; if k = 0 then if n=0 then 1; else A011971(n-1,n-1) ; fi ; else A011971(n,k-1)+A011971(n-1,k-1) ; fi ; end: A000110 := proc(n) option remember; if n<=1 then 1 ; else add( binomial(n-1,i)*A000110(n-1-i),i=0..n-1) ; fi ; end: A095149 := proc(n,k) option remember ; if k = 0 then A000110(n) ; else A011971(n-1,k-1) ; fi ; end: for n from 0 to 11 do for k from 0 to n do printf("%d, ",A095149(n,k)) ; od ; od ; # R. J. Mathar, Feb 05 2007
    # alternative Maple program:
    b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
          b(n-1, max(j, m), max(k-1, -1)), j=`if`(k=0, m+1, 1..m+1)))
        end:
    T:= (n, k)-> b(n, 0, n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 20 2018
  • Mathematica
    nmax = 10; t[n_, 1] = t[n_, n_] = BellB[n-1]; t[n_, 2] = BellB[n-2]; t[n_, k_] /; n >= k >= 3 := t[n, k] = t[n, k-1] + t[n-1, k-1]; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011, from formula with offset 1 *)
  • Python
    # requires Python 3.2 or higher.
    from itertools import accumulate
    A095149_list, blist = [1,1,1], [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A095149_list += [blist[-1]]+ blist
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

With offset 1, T(n,1) = T(n,n) = T(n+1,2) = B(n-1) = A000110(n-1) (the Bell numbers). T(n,k) = T(n,k-1) + T(n-1,k-1) for n >= k >= 3. T(n,n-1) = B(n-1) - B(n-2) = A005493(n-3) for n >= 3 (B(q) are the Bell numbers A000110). T(n,k) = A011971(n-2,k-2) for n >= k >= 2. In other words, deleting the first row and first column we obtain Aitken's array A011971 (also called Bell or Pierce triangle; offset in A011971 is 0). - Emeric Deutsch, Oct 29 2006
T(n,1) = B(n-1); T(n,2) = B(n-2) for n >= 2; T(n,k) = Sum_{i=0..k-2} binomial(k-2,i)*B(n-2-i) for 3 <= k <= n, where B(q) are the Bell numbers (A000110). Generating polynomial of row n is P[n](t) = Q[n](t,1), where Q[n](t,s) = t^n*Q[n-1](1,s) + s*dQ[n-1](t,s)/ds + (s-1) Q[n-1](t,s); Q[1](t,s) = ts. - Emeric Deutsch, Oct 29 2006

Extensions

Corrected and extended by R. J. Mathar, Feb 05 2007
Entry revised by N. J. A. Sloane, Jun 01 2005, Jun 16 2007

A336421 Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n).

Original entry on oeis.org

1, 3, 13, 76, 571, 5309, 59341, 780149
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2020

Keywords

Comments

A number has distinct prime exponents iff its prime signature is strict.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(2) = 13 ways:
  12/1/1  12/2/1  12/3/1  12/4/1  12/12/1
          12/2/2  12/3/3  12/4/2  12/12/2
                          12/4/4  12/12/3
                                  12/12/4
                                  12/12/12
		

Crossrefs

A000258 shifted once to the left is dominated by this sequence.
A336422 is the generalization to non-superprimorials.
A000110 counts divisors of superprimorials with distinct prime exponents.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    strsig[n_]:=UnsameQ@@Last/@FactorInteger[n];
    Table[Total[Cases[Divisors[chern[n]],d_?strsig:>Count[Divisors[d],e_?strsig]]],{n,0,5}]
Showing 1-10 of 15 results. Next