cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A336390 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336467(i) = A336467(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 5, 2, 6, 1, 7, 4, 8, 3, 9, 3, 3, 2, 10, 5, 11, 2, 12, 6, 2, 1, 6, 7, 6, 4, 13, 8, 14, 3, 15, 9, 16, 3, 17, 3, 3, 2, 4, 10, 18, 5, 19, 11, 18, 2, 20, 12, 12, 6, 21, 2, 22, 1, 23, 6, 24, 7, 6, 6, 7, 4, 25, 13, 26, 8, 6, 14, 8, 3, 27, 15, 15, 9, 28, 16, 29, 3, 30, 17, 14, 3, 9, 3, 29, 2, 31, 4, 17, 10, 32, 18, 33, 5, 34
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336467(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A331410(i) = A331410(j),
a(i) = a(j) => A336391(i) = A336391(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    Aux336390(n) = [A336158(n), A336467(n)];
    v336390 = rgs_transform(vector(up_to, n, Aux336390(n)));
    A336390(n) = v336390[n];

A365427 a(n) = A336467(A163511(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 3, 3, 1, 1, 1, 1, 27, 1, 9, 9, 1, 1, 3, 3, 3, 3, 1, 1, 3, 1, 1, 1, 81, 1, 27, 27, 1, 1, 9, 9, 3, 9, 1, 1, 9, 1, 3, 3, 9, 3, 3, 3, 3, 3, 1, 1, 9, 1, 3, 3, 7, 1, 1, 1, 243, 1, 81, 81, 1, 1, 27, 27, 3, 27, 1, 1, 27, 1, 9, 9, 9, 9, 3, 3, 9, 9, 1, 1, 27, 1, 9, 9, 49, 1, 3, 3, 27, 3
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2023

Keywords

Crossrefs

Cf. also A365426.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A365427(n) = A336467(A163511(n));

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A336392 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336467(i) = A336467(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 3, 9, 6, 5, 17, 10, 18, 3, 19, 11, 20, 6, 21, 12, 22, 2, 23, 13, 24, 7, 25, 14, 26, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 3, 32, 9, 33, 6, 34, 5, 35, 17, 36, 10, 21, 18, 37, 3, 11, 19, 38, 11, 39, 20, 40, 6, 41, 21, 42, 12, 43, 22, 44, 2, 45, 23, 46, 13
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336467(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A000265(n) = (n>>valuation(n,2));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    Aux336392(n) = [A278222(n), A336467(n)];
    v336392 = rgs_transform(vector(up_to, n, Aux336392(n)));
    A336392(n) = v336392[n];

A336393 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336467(i) = A336467(j) and A278221(A000265(i)) = A278221(A000265(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 7, 1, 8, 2, 9, 3, 10, 5, 11, 2, 12, 6, 2, 4, 13, 7, 14, 1, 15, 8, 16, 2, 17, 9, 18, 3, 19, 10, 20, 5, 7, 11, 21, 2, 4, 12, 22, 6, 23, 2, 24, 4, 25, 13, 26, 7, 27, 14, 10, 1, 28, 15, 29, 8, 30, 16, 31, 2, 32, 17, 33, 9, 34, 18, 35, 3, 2, 19, 36, 10, 37, 20, 38, 5, 39, 7, 18, 11, 40, 21, 41, 2, 42, 4, 15, 12
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336467(n), A278221(A000265(n))], or equally, of the ordered pair [A336467(n), A336395(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    Aux336393(n) = [A336467(n), A278221(A000265(n))];
    v336393 = rgs_transform(vector(up_to, n, Aux336393(n)));
    A336393(n) = v336393[n];

A365467 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336467(i) = A336467(j) and A336467(A163511(i)) = A336467(A163511(j)) for all i, j >= 1, where A336467 is fully multiplicative with a(2) = 1 and a(p) = oddpart(p+1) for odd primes p.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 8, 4, 2, 1, 9, 5, 3, 3, 10, 2, 3, 1, 2, 6, 11, 1, 12, 7, 13, 2, 14, 8, 15, 4, 2, 2, 4, 1, 3, 9, 16, 5, 17, 3, 9, 3, 18, 10, 19, 2, 20, 3, 21, 1, 22, 2, 23, 6, 11, 11, 6, 1, 24, 12, 9, 7, 2, 13, 7, 2, 8, 14, 14, 8, 17, 15, 19, 4, 25, 2, 26, 2, 8, 4, 27, 1, 28, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336467(n), A365427(n)].
For all i, j: A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A365467aux(n) = [A336467(n), A336467(A163511(n))];
    v365467 = rgs_transform(vector(up_to,n,A365467aux(n)));
    A365467(n) = v365467[n];

A339877 a(n) = A336467(A122111(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 9, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 9, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 9, 7, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 9, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 7, 1, 3, 9, 1, 1, 3, 1, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A339877(n) = A336467(A122111(n));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A105560(n) = if(1==n,n,prime(bigomega(n)));
    A339877(n) = if(1==n||isprime(n),1,A000265(A105560(n)+1) * A339877(A064989(n)));

Formula

For noncomposite n, a(n) = 1, for composite n, a(n) = A000265(A105560(n)+1) * a(A064989(n)).
a(n) = A336467(A122111(n)).

A366380 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336158(i) = A336158(j), A336466(i) = A336466(j) and A336467(i) = A336467(j) for all i, j >= 1, where A336466 is fully multiplicative with a(p) = oddpart(p-1) for any prime p and A336467 is fully multiplicative with a(2) = 1 and a(p) = oddpart(p+1) for odd primes, and A336158(n) gives the prime signature of the odd part of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42, 11, 43, 22, 44, 6, 45, 23, 46, 12, 47, 24, 48, 2, 49, 25, 50
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2023

Keywords

Comments

Restricted growth sequence transform of the triplet [A336158(n), A336466(n), A336467(n)].
For all i, j >= 1:
A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A366381(i) = A366381(j),
a(i) = a(j) => A335880(i) = A335880(j),
a(i) = a(j) => A336390(i) = A336390(j),
a(i) = a(j) => A336470(i) = A336470(j).

Crossrefs

Differs from A003602 and A351090 for the first time at n=153, where a(153) = 38, while A003602(153) = A351090(153) = 77.
Differs from A365388 for the first time at n=99, where a(99) = 50, while A365388(99) = 41.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A366380aux(n) = [A336158(n), A336466(n), A336467(n)];
    v366380 = rgs_transform(vector(up_to,n,A366380aux(n)));
    A366380(n) = v366380[n];

A366381 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336466(i) = A336466(j) and A336467(i) = A336467(j) for all i, j >= 1, where A336466 is fully multiplicative with a(p) = oddpart(p-1) for any prime p and A336467 is fully multiplicative with a(2) = 1 and a(p) = oddpart(p+1) for odd primes p.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 6, 5, 1, 3, 9, 2, 10, 1, 4, 6, 11, 1, 12, 7, 5, 2, 13, 3, 14, 4, 2, 8, 15, 1, 16, 6, 6, 5, 17, 1, 18, 3, 7, 9, 19, 2, 20, 10, 3, 1, 21, 4, 22, 6, 8, 11, 23, 1, 24, 12, 6, 7, 25, 5, 26, 2, 1, 13, 27, 3, 28, 14, 9, 4, 29, 2, 30, 8, 10, 15, 31, 1, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336466(n), A336467(n)].
For all i, j: A003602(i) = A003602(j) => A366380(i) = A366380(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A366381aux(n) = [A336466(n), A336467(n)];
    v366381 = rgs_transform(vector(up_to,n,A366381aux(n)));
    A366381(n) = v366381[n];

A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4
Offset: 1

Views

Author

Ali Sada, Jan 16 2020

Keywords

Comments

Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020
Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020
If and only if a(n) is equal to A005087(n), then sigma(2n) - sigma(n) is a power of 2. (See A336923, A046528). - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
		

Crossrefs

Cf. A000265, A005087, A006530 (greatest prime factor), A052126, A078701, A087436, A329662 (positions of records and the first occurrences of each n), A334097, A334098, A334108, A334861, A336467, A336921, A336922, A336923 (A046528).
Cf. array A335430, and its rows A335431, A335882, and also A335874.
Cf. also A329697 (analogous sequence when using the map k -> k - k/p), A335878.
Cf. also A330437, A335884, A335885, A336362, A336363 for other similar iterations.

Programs

  • Magma
    f:=func; g:=func; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do  s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 19 2020
    
  • Mathematica
    a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
  • PARI
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(1+f[k,1])))); }; \\ Antti Karttunen, Apr 30 2020

Formula

From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
a(n) = A334097(n) - A334098(n).
a(A122111(n)) = A334108(n).
(End)
a(n) = A334861(n) - A329697(n). - Antti Karttunen, May 14 2020
a(n) = a(A336467(n)) + A087436(n) = A336921(n) + A087436(n). - Antti Karttunen, Mar 16 2021

Extensions

Data section extended up to a(105) by Antti Karttunen, Apr 29 2020

A336466 Fully multiplicative with a(p) = A000265(p-1) for any prime p, where A000265(k) gives the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 3, 1, 1, 1, 1, 9, 1, 3, 5, 11, 1, 1, 3, 1, 3, 7, 1, 15, 1, 5, 1, 3, 1, 9, 9, 3, 1, 5, 3, 21, 5, 1, 11, 23, 1, 9, 1, 1, 3, 13, 1, 5, 3, 9, 7, 29, 1, 15, 15, 3, 1, 3, 5, 33, 1, 11, 3, 35, 1, 9, 9, 1, 9, 15, 3, 39, 1, 1, 5, 41, 3, 1, 21, 7, 5, 11, 1, 9, 11, 15, 23, 9, 1, 3, 9, 5, 1, 25, 1, 51, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

For the comment here, we extend the definition of the second kind of Cunningham chain (see Wikipedia-article) so that also isolated primes for which neither (p+1)/2 nor 2p-1 is a prime are considered to be in singular chains, that is, in chains of the length one. If we replace one or more instances of any particular odd prime factor p in n with any odd prime q in such a chain, so that m = (q^k)*n / p^(e-k), where e is the exponent of p of n, and k <= e is the number of instances of p replaced with q, then it holds that a(m) = a(n), and by induction, the value stays invariant for any number of such replacements. Note also that A001222, but not necessarily A001221 will stay invariant in such changes.
For example, if some of the odd prime divisors p of n are in A005382, then replacing it with 2p-1 (i.e., the corresponding terms of A005383), gives a new number m, for which a(m) = a(n). And vice versa, the same is true for any of the prime divisors > 3 of n that are in A005383, then replacing any one of them with (p+1)/2 will not affect the result. For example, a(37*37*37) = a(19*37*73) = 729 as 37 is both in A005382 and in A005383.
a(n) = A053575(n) for squarefree n (A005117). - Antti Karttunen, Mar 16 2021

Crossrefs

Programs

  • Mathematica
    Array[Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]] &, 105] (* Michael De Vlieger, Jul 24 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); };

Formula

a(n) = A000265(A003958(n)) = A000265(A333787(n)).
a(A000010(n)) = A336468(n) = a(A053575(n)).
A329697(a(n)) = A336396(n) = A329697(n) - A087436(n).
a(n) = A335915(n) / A336467(n). - Antti Karttunen, Mar 16 2021
Showing 1-10 of 19 results. Next