cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A336470 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336466(i) = A336466(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 5, 2, 3, 3, 6, 1, 2, 4, 7, 2, 8, 5, 9, 2, 4, 3, 10, 3, 11, 6, 12, 1, 13, 2, 8, 4, 7, 7, 8, 2, 5, 8, 14, 5, 15, 9, 16, 2, 17, 4, 6, 3, 18, 10, 13, 3, 19, 11, 20, 6, 12, 12, 21, 1, 8, 13, 22, 2, 23, 8, 24, 4, 7, 7, 15, 7, 25, 8, 26, 2, 27, 5, 28, 8, 6, 14, 29, 5, 9, 15, 19, 9, 25, 16, 19, 2, 3, 17, 30, 4, 31, 6, 32, 3, 33
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336466(n), A336158(n)].
For all i, j:
A336460(i) = A336460(j) => a(i) = a(j),
a(i) = a(j) => A329697(i) = A329697(j),
a(i) = a(j) => A336471(i) = A336471(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    Aux336470(n) = [A336466(n), A336158(n)];
    v336470 = rgs_transform(vector(up_to, n, Aux336470(n)));
    A336470(n) = v336470[n];

A336460 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A336158(n), A336466(n)], for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 3, 5, 9, 3, 10, 6, 11, 2, 12, 7, 13, 4, 14, 8, 15, 1, 16, 3, 17, 5, 18, 9, 19, 3, 20, 10, 21, 6, 22, 11, 23, 2, 24, 12, 25, 7, 26, 13, 27, 4, 28, 14, 29, 8, 30, 15, 31, 1, 32, 16, 33, 3, 34, 17, 35, 5, 18, 18, 22, 9, 36, 19, 37, 3, 38, 20, 39, 10, 40, 21, 41, 6, 42, 22, 43, 11, 44, 23, 45, 2, 7, 24, 46, 12, 47, 25, 48, 7, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Restricted growth sequence transform of the ordered triple [A278222(n), A336158(n), A336466(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A336159(i) = A336159(j),
a(i) = a(j) => A336470(i) = A336470(j) => A336471(i) = A336471(j),
a(i) = a(j) => A336472(i) = A336472(j),
a(i) = a(j) => A336473(i) = A336473(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A336158(n) = A046523(A000265(n));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    Aux336460(n) = [A278222(n), A336158(n), A336466(n)];
    v336460 = rgs_transform(vector(up_to, n, Aux336460(n)));
    A336460(n) = v336460[n];

A340085 a(n) = A336466(n) / gcd(n-1, A336466(n)); Odd part of A340082(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 9, 3, 1, 1, 3, 1, 5, 1, 11, 1, 1, 3, 1, 1, 1, 1, 1, 5, 3, 9, 7, 1, 1, 1, 15, 3, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 9, 1, 3, 15, 3, 1, 1, 1, 5, 1, 3, 1, 21, 7, 5, 1, 1, 1, 11, 15, 23, 9, 1, 1, 9, 5, 1, 1, 1, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A340085(n) = { my(u=A336466(n)); u/gcd(n-1, u); };

Formula

a(n) = A000265(A340082(n)).
a(n) = A336466(n) / A340084(n) = A336466(n) / gcd(n-1, A336466(n)).
For all n >= 0, a(A003961(A019565(n))) = a(A019565(2*n)) = A339901(n).

A336472 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336466(i) = A336466(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 3, 5, 2, 6, 4, 7, 1, 3, 3, 8, 3, 9, 5, 10, 2, 11, 6, 12, 4, 13, 7, 14, 1, 15, 3, 6, 3, 16, 8, 17, 3, 18, 9, 19, 5, 20, 10, 21, 2, 8, 11, 12, 6, 22, 12, 23, 4, 24, 13, 25, 7, 26, 14, 27, 1, 28, 15, 29, 3, 30, 6, 31, 3, 16, 16, 20, 8, 32, 17, 33, 3, 34, 18, 35, 9, 36, 19, 37, 5, 38, 20, 39, 10, 40, 21, 41, 2, 6, 8, 42, 11, 43, 12, 44, 6, 45
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336466(n)].
For all i, j: A336460(i) = A336460(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    Aux336472(n) = [A278222(n), A336466(n)];
    v336472 = rgs_transform(vector(up_to, n, Aux336472(n)));
    A336472(n) = v336472[n];

A365426 a(n) = A336466(A163511(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 3, 5, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 9, 1, 9, 9, 25, 1, 1, 1, 3, 1, 3, 3, 15, 1, 3, 3, 5, 3, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 81, 1, 1, 1, 27, 1, 27, 27, 125, 1, 1, 1, 9, 1, 9, 9, 75, 1, 9, 9, 25, 9, 25, 25, 9, 1, 1, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2023

Keywords

Crossrefs

Cf. also A365427.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
    A365426(n) = A336466(A163511(n));

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A340084 a(n) = gcd(n-1, A336466(n)); Odd part of A340081(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 11, 1, 1, 1, 1, 3, 7, 1, 15, 1, 1, 1, 1, 1, 9, 1, 1, 1, 5, 1, 21, 1, 1, 1, 23, 1, 3, 1, 1, 3, 13, 1, 1, 1, 1, 1, 29, 1, 15, 1, 1, 1, 1, 5, 33, 1, 1, 3, 35, 1, 9, 1, 1, 3, 1, 1, 39, 1, 1, 1, 41, 1, 1, 1, 1, 1, 11, 1, 9, 1, 1, 1, 1, 1, 3, 1, 1, 1, 25, 1, 51, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A340084(n) = { my(u=A336466(n)); gcd(n-1, u); };

Formula

a(n) = gcd(n-1, A336466(n)).
a(n) = A000265(A340081(n)) = A336466(n) / A340085(n).
For n >= 2, a(n) = A000265(n-1) / A340086(n).
For n >= 1, a(A000040(n)) = A057023(n).
For n >= 0, a(A019565(2*n)) = A339899(n).

A340086 a(1) = 0, for n > 1, a(n) = A000265(n-1) / gcd(n-1, A336466(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 7, 57, 1, 59, 1, 61, 31, 63, 1, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

From the second term onward, the odd part of A340083.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000265(n-1) / A340084(n) = A000265(A340083(n)).

A336468 a(n) = A336466(phi(n)), where A336466 is fully multiplicative with a(p) = A000265(p-1) for prime p, with A000265(k) giving the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 5, 1, 1, 5, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336468(n) = { my(f=factor(eulerphi(n))); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); };
    \\ Alternatively, as follows, requiring also code from A336466:
    A336468(n) = { my(f=factor(n)); prod(k=1,#f~,A336466(f[k,1]-1) * A336466(f[k,1])^(f[k,2]-1)); };

Formula

a(n) = A336466(A000010(n)).
Multiplicative with a(p^e) = A336466(p-1) * A336466(p)^(e-1).

A339876 a(n) = A336466(A122111(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 9, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A339876(n) = A336466(A122111(n));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A105560(n) = if(1==n,n,prime(bigomega(n)));
    A339876(n) = if(1==n,n,A000265(A105560(n)-1) * A339876(A064989(n)));

Formula

a(1) = 1, for n > 1, a(n) = A000265(A105560(n)-1) * a(A064989(n)).
a(n) = A336466(A122111(n)).

A342666 a(n) = A336466(A156552(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 9, 1, 5, 1, 11, 1, 3, 3, 3, 1, 3, 1, 15, 1, 21, 1, 1, 1, 1, 5, 3, 1, 9, 1, 33, 5, 9, 1, 23, 1, 1, 3, 65, 1, 7, 1, 35, 21, 5, 1, 21, 1, 341, 9, 3, 1, 11, 1, 27, 1, 5, 1, 5, 1, 15, 3, 51, 1, 27, 1, 39, 1, 1365, 1, 1, 5, 49, 9, 1, 1, 1, 1, 117, 5, 825, 3, 9, 1, 9, 3, 1, 1, 7, 1
Offset: 2

Views

Author

Antti Karttunen, Mar 18 2021

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
    A342666(n) = A336466(A156552(n));
    
  • PARI
    \\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
    v156552sigs = readvec("a156552.txt");
    A000265(n) = (n>>valuation(n,2));
    A342666(n) = if(isprime(n),1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,A000265(ps[i]-1)^es[i])); \\ Antti Karttunen, Jan 29 2022

Formula

a(n) = A336466(A156552(n)) = A336466(A322993(n)).
a(p) = 1 for all primes p.
a(A003961(n)) = a(n).
Showing 1-10 of 29 results. Next