cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336476 a(n) = gcd(A000593(n), A336475(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 12, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 12, 2, 1, 12, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 1, 12, 2, 2, 4, 4, 2, 4, 2, 2, 12, 2, 2, 2, 1, 4, 12, 2, 2, 12, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 12, 2, 2, 6, 28, 2, 4, 2, 20, 2, 2, 3, 6, 1, 2, 12, 2, 2, 24
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Comments

All odd terms k in A001599 (Ore's Harmonic numbers) satisfy a(k) = A336475(k).

Crossrefs

Programs

  • PARI
    A000593(n) = sigma(n>>valuation(n, 2));
    A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,(1+f[i,2]) * (f[i,1]^f[i,2]))); };
    A336476(n) = gcd(A000593(n), A336475(n));

Formula

a(n) = gcd(A000593(n), A336475(n)).
a(n) = A324121(A000265(n)).

A336845 a(n) = A000005(n) * A003961(n), where A003961 is the prime shift towards larger primes, and A000005 gives the number of divisors of n, and also of A003961(n).

Original entry on oeis.org

1, 6, 10, 27, 14, 60, 22, 108, 75, 84, 26, 270, 34, 132, 140, 405, 38, 450, 46, 378, 220, 156, 58, 1080, 147, 204, 500, 594, 62, 840, 74, 1458, 260, 228, 308, 2025, 82, 276, 340, 1512, 86, 1320, 94, 702, 1050, 348, 106, 4050, 363, 882, 380, 918, 118, 3000, 364, 2376, 460, 372, 122, 3780, 134, 444, 1650, 5103, 476, 1560
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

Dirichlet convolution of A003961 with itself.
Sequence is not injective, as it has duplicate values, for example: a(162) = a(243) = 18750. See also comments in A336475.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336845(n) = (numdiv(n)*A003961(n))
    
  • PARI
    A336845(n) = { my(f = factor(n)); prod(i=1, #f~, (1+f[i,2]) * (nextprime(1+f[i, 1])^f[i,2])); };
    
  • PARI
    A336845(n) = sumdiv(n,d,A003961(d)*A003961(n/d));

Formula

Multiplicative with a(prime(i)^e) = (e+1) * prime(1+i)^e.
a(n) = A000005(n) * A003961(n).
a(n) = A038040(A003961(n)).
a(n) = A336841(n) + A003973(n).
a(n) is odd if and only if n is a square.

A347136 a(n) = Sum_{d|n} d * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes.

Original entry on oeis.org

1, 5, 8, 19, 12, 40, 18, 65, 49, 60, 24, 152, 30, 90, 96, 211, 36, 245, 42, 228, 144, 120, 52, 520, 109, 150, 272, 342, 60, 480, 68, 665, 192, 180, 216, 931, 78, 210, 240, 780, 84, 720, 90, 456, 588, 260, 100, 1688, 247, 545, 288, 570, 112, 1360, 288, 1170, 336, 300, 120, 1824, 128, 340, 882, 2059, 360, 960, 138
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of the identity function (A000027) with the prime shifted identity (A003961). Multiplicative because both A000027 and A003961 are.
Dirichlet convolution of Euler phi (A000010) with the prime shifted sigma (A003973).
Dirichlet convolution of sigma (A000203) with the prime shifted phi (A003972).
Inverse Möbius transform of A347137.

Crossrefs

Cf. A003961, A003972, A003973, A151800, A347121, A347137 (Möbius transform).

Programs

  • Mathematica
    f[p_, e_] := ((np = NextPrime[p])^(e + 1) - p^(e + 1))/(np - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347136(n) = sumdiv(n,d,d*A003961(n/d));

Formula

a(n) = Sum_{d|n} d * A003961(n/d).
a(n) = Sum_{d|n} A000010(n/d) * A003973(d).
a(n) = Sum_{d|n} A000203(n/d) * A003972(d).
a(n) = Sum_{d|n} A347137(d).
For all primes p, a(p) = p + A003961(p).
a(n) = A347121(n) + 2*n.
Multiplicative with a(p^e) = (A151800(p)^(e+1) - p^(e+1))/(A151800(p)-p). - Amiram Eldar, Aug 24 2021

A336648 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336476(i) = A336476(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 3, 2, 1, 3, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 5, 2, 2, 2, 6, 1, 3, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 2, 2, 1, 4, 3, 2, 2, 3, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 3, 2, 2, 5, 7, 2, 4, 2, 8, 2, 2, 6, 5, 1, 2, 3, 2, 2, 9
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Comments

Restricted growth sequence transform of A336476.
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000593(n) = sigma(n>>valuation(n, 2));
    A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,(1+f[i,2]) * (f[i,1]^f[i,2]))); };
    A336476(n) = gcd(A000593(n), A336475(n));
    v336648 = rgs_transform(vector(up_to,n,A336476(n)));
    A336648(n) = v336648[n];
Showing 1-4 of 4 results.