A336531 A sieve: start with the positive integers. Let a(1)=1. Mark out the following numbers: a(1)+1, a(1)+1+2, a(1)+1+2+3, a(1)+1+2+3+4, ... . The next integer in the list not marked out is 3, so a(2)=3. Mark out the following numbers: a(2)+1, a(2)+1+2, a(2)+1+2+3, a(2)+1+2+3+4, ... . Repeat the procedure for a(3), a(4), a(5), ... .
1, 3, 5, 10, 12, 14, 19, 21, 23, 28, 30, 32, 52, 54, 61, 63, 70, 72, 86, 95, 102, 104, 111, 113, 142, 144, 151, 153, 160, 162, 169, 171, 212, 221, 230, 246, 268, 270, 293, 300, 302, 309, 311, 318, 320, 327, 349, 358, 360
Offset: 1
Keywords
Examples
The first few sieving stages are as follows: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 1 X 3 X 5 6 X 8 9 10 X 12 13 14 15 X 17 18 19 20 21 X 23 ... 1 X 3 XX 5 X X 8 X 10 X 12 X 14 15 X 17 X 19 20 21 X 23 ... 1 X 3 XX 5 XX X X X 10 XX 12 X 14 X X 17 X 19 X 21 X 23 ... 1 X 3 XX 5 XX X X X 10 XXX 12 XX 14 X XX 17 X 19 XX 21 X 23 ... 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XX XX 17 XX 19 XX 21 XX 23 ... 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XXX XX X XX 19 XXX 21 XX 23 ... 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XXX XX X XX 19 XXXX 21 XXX 23 ... 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XXX XX X XX 19 XXXX 21 XXXX 23 ... ... Continue forever and the numbers not crossed off give the sequence.
Formula
a(n) = A030194(n-1) + 1. - Hugo Pfoertner, Oct 05 2020
Comments