cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336575 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 3^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 1, 3, 12, 3, 1, 3, 21, 57, 3, 1, 3, 30, 192, 300, 3, 1, 3, 39, 408, 2001, 1686, 3, 1, 3, 48, 705, 6402, 22539, 9912, 3, 1, 3, 57, 1083, 14799, 109137, 267276, 60213, 3, 1, 3, 66, 1542, 28488, 338430, 1964010, 3287496, 374988, 3, 1, 3, 75, 2082, 48765, 817743, 8181597, 36718680, 41556585, 2381322, 3
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,      1, ...
  3,    3,     3,      3,      3,      3, ...
  3,   12,    21,     30,     39,     48, ...
  3,   57,   192,    408,    705,   1083, ...
  3,  300,  2001,   6402,  14799,  28488, ...
  3, 1686, 22539, 109137, 338430, 817743, ...
		

Crossrefs

Columns k=0-4 give: A122553, A047891, A219535, A336538, A336540.
Main diagonal gives A336578.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[3^j * Binomial[n, j] * Binomial[k*n, j - 1], {j, 1, n}]/n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 27 2020 *)
  • PARI
    T(n, k) = if(n==0, 1, sum(j=1, n, 3^j*binomial(n, j)*binomial(k*n, j-1))/n);
    
  • PARI
    T(n, k) = my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k*(2+A)); polcoeff(A, n);
    
  • PARI
    T(n, k) = sum(j=0, n, 2^(n-j)*binomial(n, j)*binomial(k*n+j+1, n)/(k*n+j+1));
    
  • PARI
    T(n, k) = sum(j=0, n, 2^j*binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k * (2 + A_k(x)).
T(n,k) = Sum_{j=0..n} 2^(n-j) * binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).
T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} 2^j * binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
T(n,k) = (1/n) * Sum_{j=0..n-1} (-2)^j * 3^(n-j) * binomial(n,j) * binomial((k+1)*n-j,n-1-j) for n > 0. - Seiichi Manyama, Aug 10 2023
T(n,k) = 3*hypergeom([1-n, -k*n], [2], 3) for n > 0. - Stefano Spezia, Aug 09 2025