A336598 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords cross the marked chord.
1, 4, 2, 21, 18, 6, 144, 156, 96, 24, 1245, 1500, 1260, 600, 120, 13140, 16470, 16560, 11160, 4320, 720, 164745, 207270, 231210, 194040, 108360, 35280, 5040, 2399040, 2976120, 3507840, 3402000, 2419200, 1149120, 322560, 40320
Offset: 1
Examples
Triangle begins: 1; 4, 2; 21, 18, 6; 144, 156, 96, 24; 1245, 1500, 1260, 600, 120; ... For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can be either (1,3), and so crossed once by (2,4), or (2,4), and so crossed once by (1,3). Hence T(2,1) = 2.
Links
- Donovan Young, Table of n, a(n) for n = 1..9870 (Rows 1..140).
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
CoefficientList[Normal[Series[x/Sqrt[1-2*x]/(1-x(1+y)),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
-
PARI
T(n)={[Vecrev(p) | p<-Vec(serlaplace(x/sqrt(1 - 2*x + O(x^n))/(1 - x*(1 + y))))]} { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jul 29 2020
Formula
T(n,k) = n*T(n-1,k) + n*T(n-1,k-1), with T(n,0) = A233481(n) for n > 0.
E.g.f.: x/sqrt(1 - 2*x)/(1 - x*(1 + y)).