cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340986 Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0

Views

Author

Geoffrey Critzer, Feb 01 2021

Keywords

Comments

A column rise (cf. A000275) means a pair of adjacent columns within a cell where each entry in the first column is less than the adjacent entry in the second column. The order of the columns cannot change. The cells are allowed to be empty.

Examples

			Square array T(n,k) begins:
  1,    1,     1,      1,      1,      1, ...
  0,    1,     2,      3,      4,      5, ...
  0,    3,    10,     21,     36,     55, ...
  0,   19,    92,    255,    544,    995, ...
  0,  211,  1354,   4725,  12196,  26215, ...
  0, 3651, 29252, 123903, 377904, 939155, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.

Crossrefs

Columns k=0-4 give: A000007, A000275, A336271, A336638, A336639.
Rows n=0-2 give: A000012, A001477, A014105.
Main diagonal gives A336665.

Programs

  • Maple
    T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Feb 02 2021
  • Mathematica
    nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
    Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid

Formula

Let E(x) = Sum_{n>=0} x^n/n!^2. Then Sum_{n>=0} T(n,k)*x^n/n!^2 = 1/E(-x)^k.
T(n,k) = (n!)^2 * [x^n] 1/BesselJ(0,2*sqrt(x))^k. - Alois P. Heinz, Feb 02 2021
For fixed k>=1, T(n,k) ~ n!^2 * n^(k-1) / ((k-1)! * r^(n + k/2) * BesselJ(1, 2*sqrt(r))^k), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A336639 Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^4.

Original entry on oeis.org

1, 4, 36, 544, 12196, 377904, 15438816, 803602944, 51908768676, 4074743122384, 382079412133936, 42184889139337344, 5417567866536188896, 800808722921088352384, 135006904500993157933056, 25751088570167886107910144, 5517695042810314282550432676
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Comments

In general, if k>=1 and Sum_{n>=0} a(n) * x^n / n!^2 = 1 / BesselJ(0, 2*sqrt(x))^k, then a(n) ~ n!^2 * n^(k-1) / ((k-1)! * r^(n + k/2) * BesselJ(1, 2*sqrt(r))^k), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4. - Vaclav Kotesovec, Jul 11 2025

Crossrefs

Column k=4 of A340986.

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^4, {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] HypergeometricPFQ[{1/2, -k, -k, -k}, {1, 1, 1/2 - k}, 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * A002895(k) * a(n-k).
a(n) ~ n!^2 * n^3 / (6 * r^(n+2) * BesselJ(1, 2*sqrt(r))^4), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A336665 a(n) = (n!)^2 * [x^n] 1 / BesselJ(0,2*sqrt(x))^n.

Original entry on oeis.org

1, 1, 10, 255, 12196, 939155, 106161756, 16554165495, 3404986723720, 893137635015219, 290965846152033460, 115256679181251696803, 54552992572663333862400, 30406695393635479756804525, 19712738332895648545008815416, 14707436666152282009334357074335
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2020

Keywords

Crossrefs

Main diagonal of A340986.

Programs

  • Mathematica
    Table[(n!)^2 SeriesCoefficient[1/BesselJ[0, 2 Sqrt[x]]^n, {x, 0, n}], {n, 0, 15}]
    A287316[n_, k_] := A287316[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[Binomial[n, j]^2 A287316[n - j, k - 1], {j, 0, n}]]]; b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[(-1)^(j + 1) Binomial[n, j]^2 A287316[j, k] b[n - j, k], {j, 1, n}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 15}]

Formula

a(n) ~ c * d^n * n!^2 / sqrt(n), where d = 3.431031961004073074179854315227049823720211... and c = 0.31156343453490677011135864540173577785263... - Vaclav Kotesovec, May 04 2024
Showing 1-3 of 3 results.