A023087
Numbers k such that k and 3*k are anagrams.
Original entry on oeis.org
0, 1035, 2475, 10035, 10350, 12375, 14247, 14724, 23751, 24147, 24714, 24750, 24876, 24975, 27585, 28575, 100035, 100350, 102375, 103428, 103500, 107235, 113724, 114237, 123507, 123714, 123750, 123876, 123975, 124137, 128034, 134505, 135045
Offset: 1
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 25-31.
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@ {0, Table[ Select[ Range[10^d + 8, 4 10^d - 1, 9], si[#] == si[3 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017, corrected by Philippe Guglielmetti, Jul 16 2018 *)
A336670
Numbers that have decimal expansion c(1)c(2)...c(n) with distinct digits that satisfy c(1) <> 0, c(1) is the largest digit, and for each i in 1..n there is j in {0, 1} such that c(i) == 2*c(i-1) + j (mod 10) (with c(0): = c(n)).
Original entry on oeis.org
0, 9, 63, 512, 874, 5012, 7513, 8624, 9874, 62513, 75013, 86374, 98624, 625013, 875124, 986374, 8750124, 9875124, 86251374, 86375124, 87513624, 98750124, 862501374, 863750124, 875013624, 986251374, 986375124, 987513624, 9862501374, 9863750124, 9875013624
Offset: 1
In all the cases below, the first digit must be the largest and all the digits must be distinct.
9 belongs to this list because c(1) = 9 = c(0) and 9 == 2*9 + 1 (mod 10).
63 belongs to this list because c(1) = 6, c(2) = 3 = c(0), 6 == 2*3 (mod 10), and 3 == 2*6 + 1 (mod 10).
512 belongs to this list because 5 == 2*2 + 1 (mod 10), 1 == 2*5 + 1 (mod 10), and 2 == 2*1 (mod 10).
5012 belongs to this list because 5 == 2*2 + 1 (mod 10), 0 == 2*5 (mod 10), 1 == 2*0 + 1 (mod 10), and 2 == 2*1 (mod 10).
62513 belongs to this list because 6 == 2*3 (mod 10), 2 == 2*6 (mod 10), 5 == 2*2 + 1 (mod 10), 1 = 2*5 + 1 (mod 10), and 3 = 2*1 + 1 (mod 10).
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 31-35.
Showing 1-2 of 2 results.
Comments