A336733 Positive integers which can be written in two bases smaller than 10 as mutually-reversed strings of digit(s).
1, 2, 3, 4, 5, 6, 7, 9, 11, 17, 22, 31, 51, 87, 91, 102, 121, 212, 220, 248, 2601, 5258, 7491, 8283, 9831, 10516, 13541, 15774, 16566, 71500, 644765, 731445, 811518, 3552340, 314767045, 1427310725, 1848187230, 1916060910, 47124212513, 455075911977
Offset: 1
Examples
7 is a term since 7 = 21 (base 3) = 12 (base 5). 9 is a term since 9 = 21 (base 4) = 12 (base 7). ... 1916060910 is a term since it is = 65324151261 (base 7) = 16215142356 (base 8).
Links
- David A. Corneth, PARI program
Crossrefs
Cf. A336768 (for bases >= 4).
Programs
-
JavaScript
n=[]; rev=[]; incl=[]; for (i=1; i<=1000; i++) { for (j=2; j<=9; j++) { n[j]=i.toString(j); rev[j]=n[j].split("").reverse().join(""); } for (j=2; j<=8; j++) for (k=j+1; k<=9; k++) if (n[j]==rev[k]) if (incl.indexOf(i)==-1) incl.push(i); } document.write(incl);
-
Mathematica
seqQ[n_] := Module[{dig = IntegerDigits[n, Range[2, 9]]}, dig = Select[dig, ! PalindromeQ[#] &]; n < 7 || Intersection[dig, Reverse /@ dig] != {}]; Select[Range[10^6], seqQ] (* Amiram Eldar, Aug 04 2020 *)
-
PARI
isok(m) = {for (b=2, 8, my(db = digits(m, b)); for(c=b+1, 9, my(dc = digits(m, c)); if (Vecrev(dc) == db, return (1));););} \\ Michel Marcus, Aug 03 2020
-
PARI
is(n) = {my(v = vecsort(vector(8, i, d = digits(n, i+1); if(d[1] < d[#d], Vecrev(d), d)))); for(i = 1, 7, if(v[i] == v[i+1], return(1))); 0} \\ David A. Corneth, Aug 03 2020
Extensions
a(40) from David A. Corneth, Aug 07 2020
Comments