cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336744 Integers b where the number of cycles under iteration of sum of squares of digits in base b is exactly three.

Original entry on oeis.org

14, 66, 94, 300, 384, 436, 496, 750, 1406, 1794, 2336, 2624, 28034
Offset: 1

Views

Author

Dino Lorenzini, Aug 02 2020

Keywords

Comments

Let b > 1 be an integer, and write the base b expansion of any nonnegative integer m as m = x_0 + x_1 b + ... + x_d b^d with x_d > 0 and 0 <= x_i < b for i=0,...,d.
Consider the map S_{x^2,b}: N to N, with S_{x^2,b}(m) := x_0^2+ ... + x_d^2.
This is the 'sum of the squares of the digits' dynamical system alluded to in the name of the sequence.
It is known that the orbit set {m,S_{x^2,b}(m), S_{x^2,b}(S_{x^2,b}(m)), ...} is finite for all m>0. Each orbit contains a finite cycle, and for a given base b, the union of such cycles over all orbit sets is finite. Let us denote by L(x^2,i) the set of bases b such that the set of cycles associated to S_{x^2,b} consists of exactly i elements. In this notation, the sequence is the set of known elements of L(x^2,3).
A 1978 conjecture of Hasse and Prichett describes the set L(x^2,2). New elements have been added to this set in the paper Integer Dynamics, by D. Lorenzini, M. Melistas, A. Suresh, M. Suwama, and H. Wang. It is natural to wonder whether the set L(x^2,3) is infinite. It is a folklore conjecture that L(x^2,1) = {2,4}.

Examples

			For instance, in base 14, the three cycles are (1), (37,85), and (25,122,164,221,123,185,178,244,46). To verify that (37,85) is a cycle in base 14, note that 37=9+2*14, and that 9^2+2^2=85. Similarly, 85=1+6*14, and 1^2+6^2=37.
		

Crossrefs

Cf. A193583, A193585 (where cycles and fixed points are treated separately).
Cf. A336762 (2 cycles).
Cf. A336783 (4 cycles with sum of cubes of the digits).

Formula

Integers b such that A193583(b)+A193585(b) = 3. - Michel Marcus, Aug 03 2020

A336783 Integers b where the number of cycles under iteration of sum of cubes of digits in base b is exactly four.

Original entry on oeis.org

5, 90, 188
Offset: 1

Views

Author

Haiyang Wang, Aug 04 2020

Keywords

Comments

Let b > 1 be an integer, and write the base b expansion of any nonnegative integer m as m = x_0 + x_1 b + ... +x_d b^d with x_d > 0 and 0 <= x_i < b for i=0,...,d.
Consider the map S_{x^3,b}: N to N, with S_{x^3,b}(m) := x_0^3+ ... + x_d^3.
It is known that the orbit set {m,S_{x^3,b}(m), S_{x^3,b}(S_{x^3,b}(m)), ...} is finite for all m>0. Each orbit contains a finite cycle, and for a given base b, the union of such cycles over all orbit sets is finite. Let us denote by L(x^3,i) the set of bases b such that the set of cycles associated to S_{x^3,b} consists of exactly i elements. In this notation, the sequence is the set of known elements of L(x^3,4).
Meanwhile, the known terms of the sequence L(x^3,1) is {2}, L(x^3,2) is empty, and L(x^3,3) is {3, 26}. It's undetermined whether the complete sequences are finite, if so, whether the above give all terms.

Examples

			For instance, when b=5 the associated four cycles are (1),(28),(118) and (9,65,35).
		

Crossrefs

Cf. A336744 and A336762 (sum of squares of digits).

Formula

Integers b where A194025(b) + A194281(b) = 4.
Showing 1-2 of 2 results.