cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dino Lorenzini

Dino Lorenzini's wiki page.

Dino Lorenzini has authored 2 sequences.

A336744 Integers b where the number of cycles under iteration of sum of squares of digits in base b is exactly three.

Original entry on oeis.org

14, 66, 94, 300, 384, 436, 496, 750, 1406, 1794, 2336, 2624, 28034
Offset: 1

Author

Dino Lorenzini, Aug 02 2020

Keywords

Comments

Let b > 1 be an integer, and write the base b expansion of any nonnegative integer m as m = x_0 + x_1 b + ... + x_d b^d with x_d > 0 and 0 <= x_i < b for i=0,...,d.
Consider the map S_{x^2,b}: N to N, with S_{x^2,b}(m) := x_0^2+ ... + x_d^2.
This is the 'sum of the squares of the digits' dynamical system alluded to in the name of the sequence.
It is known that the orbit set {m,S_{x^2,b}(m), S_{x^2,b}(S_{x^2,b}(m)), ...} is finite for all m>0. Each orbit contains a finite cycle, and for a given base b, the union of such cycles over all orbit sets is finite. Let us denote by L(x^2,i) the set of bases b such that the set of cycles associated to S_{x^2,b} consists of exactly i elements. In this notation, the sequence is the set of known elements of L(x^2,3).
A 1978 conjecture of Hasse and Prichett describes the set L(x^2,2). New elements have been added to this set in the paper Integer Dynamics, by D. Lorenzini, M. Melistas, A. Suresh, M. Suwama, and H. Wang. It is natural to wonder whether the set L(x^2,3) is infinite. It is a folklore conjecture that L(x^2,1) = {2,4}.

Examples

			For instance, in base 14, the three cycles are (1), (37,85), and (25,122,164,221,123,185,178,244,46). To verify that (37,85) is a cycle in base 14, note that 37=9+2*14, and that 9^2+2^2=85. Similarly, 85=1+6*14, and 1^2+6^2=37.
		

Crossrefs

Cf. A193583, A193585 (where cycles and fixed points are treated separately).
Cf. A336762 (2 cycles).
Cf. A336783 (4 cycles with sum of cubes of the digits).

Formula

Integers b such that A193583(b)+A193585(b) = 3. - Michel Marcus, Aug 03 2020

A172095 Integers k such that k-1,k,k+1 have few distinct primes: k=p^r, p odd prime, and (k^2-1)/8 divisible by at most two distinct prime factors.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 27, 37, 53, 107, 163, 243, 2187, 2917, 4373, 8747, 1594323, 86093443
Offset: 1

Author

Dino Lorenzini (lorenzin(AT)uga.edu), Jan 25 2010

Comments

Note the terms 3^1=3, 3^2=9, 3^3=27, 3^5=243, 3^7=2187, and 3^13=1594323. The other listed terms are prime.
Next term > 2^2000. - Max Alekseyev, Feb 16 2011

Crossrefs

Extensions

Edited and missing terms 3, 5, 9, 17 added by Max Alekseyev, Feb 16 2011