cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336772 Sums s of positive exponents such that no prime of the form 2^j*3^k + 1 with j + k = s exists.

Original entry on oeis.org

12, 24, 33, 46, 48, 60, 72, 74, 80, 96, 102, 111, 118, 120, 130, 132, 141, 142, 144, 147, 159, 162, 165, 166, 168, 186, 200, 216, 234, 240, 242, 252, 258, 288, 306, 309, 312, 318, 358, 370, 374, 375, 384, 399, 405, 408, 414, 420, 432, 435, 462, 464, 468, 478
Offset: 1

Views

Author

Hugo Pfoertner, based on a suggestion from Rainer Rosenthal, Aug 24 2020

Keywords

Examples

			a(1) = 12, because none of the 11 numbers {2^1*3^11+1, 2^2*3^10+1, ..., 2^11*3^1+1} = {354295, 236197, 157465, 104977, 69985, 46657, 31105, 20737, 13825, 9217, 6145} is prime,
a(2) = 24: none of the 23 numbers {2^1*3^23+1, 2^2*3^22+1, ..., 2^23*3^1+1} = {188286357655, 125524238437, 83682825625, 55788550417, ..., 56623105, 37748737, 25165825} is prime.
		

Crossrefs

Programs

  • PARI
    for(s=2,500, my(t=1); for(j=1,s-1, my(k=s-j); if(isprime(2^j*3^k+1),t=0;break)); if(t,print1(s,", ")))