cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003973 Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.

Original entry on oeis.org

1, 4, 6, 13, 8, 24, 12, 40, 31, 32, 14, 78, 18, 48, 48, 121, 20, 124, 24, 104, 72, 56, 30, 240, 57, 72, 156, 156, 32, 192, 38, 364, 84, 80, 96, 403, 42, 96, 108, 320, 44, 288, 48, 182, 248, 120, 54, 726, 133, 228, 120, 234, 60, 624, 112, 480, 144, 128, 62, 624, 68
Offset: 1

Views

Author

Keywords

Comments

Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.

Programs

  • Mathematica
    b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]  (* Jean-François Alcover, Jul 18 2013 *)
  • PARI
    aPrime(p,e)=my(q=nextprime(p+1));(q^(e+1)-1)/(q-1)
    a(n)=my(f=factor(n));prod(i=1,#f~,aPrime(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jul 18 2013
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
    
  • Python
    from math import prod
    from sympy import factorint, nextprime
    def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) = Sum_{d|n} A003961(d) = Sum_{d|A003961(n)} d.
a(n) = A000203(A003961(n)) = A000593(A003961(n)).
a(n) = 2*A336840(n) - A000005(n) = 2*Sum_{d|n} (A048673(d) - (1/2)).
a(n) = A008438(A108228(n)) = A008438(A048673(n)-1).
a(n) = A336838(n) * A336856(n).
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022, May 30 2025

Extensions

More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020

A286385 a(n) = A003961(n) - A000203(n).

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 3, 12, 12, 3, 1, 17, 3, 9, 11, 50, 1, 36, 3, 21, 23, 3, 5, 75, 18, 9, 85, 43, 1, 33, 5, 180, 17, 3, 29, 134, 3, 9, 29, 99, 1, 69, 3, 33, 97, 15, 5, 281, 64, 54, 23, 55, 5, 255, 19, 177, 35, 3, 1, 147, 5, 15, 171, 602, 35, 51, 3, 45, 49, 87, 1, 480, 5, 9, 121, 67, 47, 87, 3, 381, 504, 3, 5, 271, 25, 9, 35, 171, 7, 291, 75, 93, 57, 15, 41, 963
Offset: 1

Views

Author

Antti Karttunen, May 09 2017

Keywords

Comments

Are all terms nonnegative? This question is equivalent to the question posed in A285705.
From Antti Karttunen, Aug 05 2020: (Start)
The answer to the above question is yes. Because both A000203 and A003961 are multiplicative sequences, it suffices to prove that for any prime p, and e >= 1, q^e >= sigma(p^e) = ((p^(1+e))-1) / (p-1), where q = A151800(p), i.e., the next larger prime after p. If p is a lesser twin prime, then q = p+2 (and this difference can't be less than 2, apart from case p=2), and it is easy to see that (n+2)^e > ((n^(e+1)) - 1) / (n-1), for all n >= 2, e >= 1.
See comments in A326042.
(End)
This is the inverse Möbius transform of A337549, from which it is even easier to see that all terms are nonnegative. - Antti Karttunen, Sep 22 2020

Crossrefs

Cf. A326057 [= gcd(a(n), A252748(n))].

Programs

  • Mathematica
    Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] - DivisorSigma[1, #] &, 96] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A286385(n) = (A003961(n) - sigma(n));
    for(n=1, 16384, write("b286385.txt", n, " ", A286385(n)));
    
  • Python
    from sympy import factorint, nextprime, divisor_sigma as D
    from operator import mul
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2
    def a(n): return 2*a048673(n) - D(n) - 1 # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286385 n) (- (A003961 n) (A000203 n)))
    

Formula

a(n) = A285705(A048673(n)) - 1 = 2*A048673(n) - A000203(n) - 1.
a(n) = A336852(n) - A336851(n). - Antti Karttunen, Aug 05 2020
a(n) = Sum_{d|n} A337549(d). - Antti Karttunen, Sep 22 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) - Pi^2/12 = 1.24152934..., where q(p) = nextprime(p) (A151800). - Amiram Eldar, Dec 21 2023

A336850 a(n) = gcd(A003961(n), sigma(A003961(n))), where A003961 is the prime shift towards larger primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 13, 1, 3, 1, 3, 1, 3, 5, 9, 1, 3, 7, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 5, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 9, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 15, 1, 9, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A003961(n), A003973(n)) = gcd(A003961(n), A336851(n)).
a(n) = A009194(A003961(n)).
a(n) = A003961(n) / A336849(n).

A336852 a(n) = sigma(A003961(n)) - sigma(n).

Original entry on oeis.org

0, 1, 2, 6, 2, 12, 4, 25, 18, 14, 2, 50, 4, 24, 24, 90, 2, 85, 4, 62, 40, 20, 6, 180, 26, 30, 116, 100, 2, 120, 6, 301, 36, 26, 48, 312, 4, 36, 52, 230, 2, 192, 4, 98, 170, 48, 6, 602, 76, 135, 48, 136, 6, 504, 40, 360, 64, 38, 2, 456, 6, 56, 268, 966, 60, 192, 4, 134, 84, 240, 2, 1045, 6, 54, 218, 172, 72, 264, 4, 782
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Comments

Inverse Möbius transform of A336853(n) = (A003961(n) - n).

Crossrefs

Cf. A001105 (positions of odd terms), A001359 (positions of 2's).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336852(n) = (sigma(A003961(n)) - sigma(n));
    
  • PARI
    A336852(n) = sumdiv(n,d,A003961(d)-d);

Formula

a(n) = Sum_{d|n} (A003961(d)-d).
a(n) = A003973(n) - A000203(n) = A000203(A003961(n)) - A000203(n).
a(n) = A336851(n) + A286385(n).

A344587 Deficiency of prime-shifted n: a(n) = 2*A003961(n) - sigma(A003961(n)).

Original entry on oeis.org

1, 2, 4, 5, 6, 6, 10, 14, 19, 10, 12, 12, 16, 18, 22, 41, 18, 26, 22, 22, 38, 22, 28, 30, 41, 30, 94, 42, 30, 18, 36, 122, 46, 34, 58, 47, 40, 42, 62, 58, 42, 42, 46, 52, 102, 54, 52, 84, 109, 66, 70, 72, 58, 126, 70, 114, 86, 58, 60, 6, 66, 70, 178, 365, 94, 54, 70, 82, 110, 78, 72, 110, 78, 78, 148, 102, 118, 78
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

First negative value occurs as a(120) = -30.
Questions: Which subsets of natural numbers generate the "cut sigmoid" graph(s) that cross the X-axis in the (lowermost) scatter plot?

Crossrefs

Cf. A000203, A003961, A003973, A033879, A153881, A336851, A337386 (positions of terms <= 0), A346246 (Dirichlet inverse), A349387, A378216, A378231 [= a(n^2)].
Inverse Möbius transform of A337544.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };

Formula

a(n) = A033879(A003961(n)) = 2*A003961(n) - A003973(n).
a(n) = Sum_{d|n} A337544(d).
From Antti Karttunen, Nov 23 2024: (Start)
a(n) = Sum_{d|n} A003961(d)*A153881(n/d) = A003961(n) - A336851(n).
a(n) = Sum_{d|n} A033879(d)*A349387(n/d).
a(n) = Sum_{d|n} A003972(d)*A378216(n/d).
(End)
Showing 1-5 of 5 results.