A336826 Bogotá numbers: numbers k such that k = m*p(m) where p(m) is the digital product of m.
0, 1, 4, 9, 11, 16, 24, 25, 36, 39, 42, 49, 56, 64, 75, 81, 88, 93, 96, 111, 119, 138, 144, 164, 171, 192, 224, 242, 250, 255, 297, 312, 336, 339, 366, 378, 393, 408, 422, 448, 456, 488, 497, 516, 520, 522, 525, 564, 575, 648, 696, 704, 738, 744, 755, 777, 792
Offset: 1
Examples
From _David A. Corneth_, Aug 06 2020: (Start) 520 is a term because 52 * p(52) = 52 * 10 = 520. Example using we only have to look at 7-smooth divisors: 520 is a term as its 7-smooth divisors d are 1, 2, 4, 5, 8, 10, 20, 40. values 520/d are 520, 260, 130, 104, 65, 52, 26, 13 of which 52 * (5*2) = 520 where (5*2) are the products of 52. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Sean A. Irvine, Java program (github)
- Math Stackexchange, Gaps between Bogotá numbers, 2020.
- Puzzling Stackexchange, Pairs of Bogotá numbers, 2020.
Programs
-
PARI
f(n) = vecprod(digits(n))*n; \\ A098736 isok(n) = my(k=0); for (k=0, n, if (f(k) == n, return(1))); \\ Michel Marcus, Aug 06 2020
-
PARI
is(n) = { my(f = factor(n), s7 = 1, d, sl = sqrtint(n)); for(i = 1, #f~, if(f[i, 1] > 7, break ); s7 *= f[i, 1]^f[i, 2]; ); d = divisors(s7); for(i = 1, #d, if(d[i] > sl, return(0)); if(n/d[i] * vecprod(digits(n/d[i])) == n, return(1); ) ); 0 } \\ David A. Corneth, Aug 06 2020
Comments