cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352412 E.g.f.: 2*x / LambertW( 2*x/(1-x) ).

Original entry on oeis.org

1, 1, -4, 20, -224, 3392, -67232, 1629728, -46799104, 1552143104, -58386807296, 2455954797056, -114222622662656, 5819845970653184, -322384671892123648, 19290013218140254208, -1239886482366130946048, 85200320552417960394752
Offset: 0

Views

Author

Paul D. Hanna, Mar 15 2022

Keywords

Comments

An interesting property of this e.g.f. A(x) is that the sum of coefficients of x^k, k=0..n, in A(x)^n equals zero, for n > 1.

Examples

			E.g.f.: A(x) = 1 + x - 4*x^2/2! + 20*x^3/3! - 224*x^4/4! + 3392*x^5/5! - 67232*x^6/6! + 1629728*x^7/7! - 46799104*x^8/8! + ...
such that A(x) = (1-x) * exp(2*x/A(x)), where
exp(2*x/A(x)) = 1 + 2*x + 20*x^3/3! - 144*x^4/4! + 2672*x^5/5! - 51200*x^6/6! + 1271328*x^7/7! - 36628480*x^8/8! + ...
Related series.
The e.g.f. A(x) satisfies A( x/(exp(-2*x) + x) ) = 1/(exp(-2*x) + x), where
1/(exp(-2*x) + x) = 1 + x - 2*x^2/2! - 10*x^3/3! + 24*x^4/4! + 312*x^5/5! - 560*x^6/6! + ... + A336958(n)*(-x)^n/n! + ...
Related table.
Another defining property of the e.g.f. A(x) is illustrated here.
The table of coefficients of x^k/k! in A(x)^n begins:
n=1: [1, 1, -4,   20,  -224, 3392, -67232, 1629728, ...];
n=2: [1, 2, -6,   16,  -192, 2944, -58880, 1434752, ...];
n=3: [1, 3, -6,   -6,   -48, 1296, -29664,  776544, ...];
n=4: [1, 4, -4,  -40,    88,  128,  -7424,  263936, ...];
n=5: [1, 5,  0,  -80,   120,  280,   -320,   38720, ...];
n=6: [1, 6,  6, -120,   -24, 1872,  -3312,     768, ...];
n=7: [1, 7, 14, -154,  -392, 4424,  -3920,  -22288, ...];
...
from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in A(x)^n equals zero, for n > 1, as follows:
n=1: 2 = 1 + 1;
n=2: 0 = 1 + 2 + -6/2!;
n=3: 0 = 1 + 3 + -6/2! +   -6/3!;
n=4: 0 = 1 + 4 + -4/2! +  -40/3! +   88/4!;
n=5: 0 = 1 + 5 +  0/2! +  -80/3! +  120/4! +  280/5!;
n=6: 0 = 1 + 6 +  6/2! + -120/3! +  -24/4! + 1872/5! + -3312/6!;
n=7: 0 = 1 + 7 + 14/2! + -154/3! + -392/4! + 4424/5! + -3920/6! + -22288/7!;
...
		

Crossrefs

Programs

  • PARI
    {a(n) = n!*polcoeff( x/serreverse( x/(exp(-2*x  +x^2*O(x^n)) + x) ),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(2*x/lambertw(2*x/(1-x)))) \\ Michel Marcus, Mar 17 2022

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = 2*x / LambertW( 2*x/(1-x) ).
(2) A(x) = (1-x) * exp( 2*x/A(x) ).
(3) A(x) = 2*x / log( A(x)/(1-x) ).
(4) A( x/(exp(-2*x) + x) ) = 1/(exp(-2*x) + x).
(5) A(x) = x / Series_Reversion( x/(exp(-2*x) + x) ).
(6) Sum_{k=0..n} [x^k] A(x)^n = 0, for n > 1.
(7) [x^(n+1)/(n+1)!] A(x)^n = -(-2)^(n+1) * n for n >= (-1).
a(n) ~ (-1)^(n+1) * exp(-1) * sqrt(2) * (2 - exp(-1))^(n - 1/2) * n^(n-1). - Vaclav Kotesovec, Mar 15 2022

A336959 E.g.f.: 1 / (1 - x * exp(-2*x)).

Original entry on oeis.org

1, 1, -2, -6, 40, 120, -1872, -3920, 155776, 56448, -19946240, 44799744, 3588719616, -21265587200, -850126505984, 9423227873280, 251457224998912, -4665150579572736, -88212028284665856, 2663461772025462784, 34353949630376181760, -1756678038088484388864
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - x Exp[-2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(-2 (n - k))^k/k!, {k, 0, n}], {n, 1, 21}]]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k (-2)^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

a(n) = n! * Sum_{k=0..n} (-2 * (n-k))^k / k!.
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k * (-2)^(k-1) * a(n-k).

A336969 a(n) = n! * [x^n] 1 / (exp(n*x) - x).

Original entry on oeis.org

1, 0, -2, 33, -424, 495, 342864, -22382913, 915074432, -913039857, -5455432211200, 812138028148623, -75257247474017280, 1984517460320303415, 1155562494647499610112, -361521639388178369672625, 67461150715150454861692928, -6658374003334822571921759457
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(Exp[n x] - x), {x, 0, n}], {n, 0, 17}]
    Join[{1}, Table[n! Sum[(-n (n - k + 1))^k/k!, {k, 0, n}], {n, 1, 17}]]

Formula

a(n) = n! * Sum_{k=0..n} (-n * (n-k+1))^k / k!.
Showing 1-3 of 3 results.