cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A337400 Table read by antidiagonals: T(w,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section 2w X 2w where the walk starts at the middle of the tube.

Original entry on oeis.org

6, 26, 6, 98, 30, 6, 330, 146, 30, 6, 1130, 658, 150, 30, 6, 3746, 2858, 722, 150, 30, 6, 12802, 11802, 3450, 726, 150, 30, 6, 42498, 48282, 15930, 3530, 726, 150, 30, 6, 143610, 193714, 72522, 16826, 3534, 726, 150, 30, 6, 472242, 781114, 321794, 80010, 16922, 3534, 726, 150, 30, 6
Offset: 1

Views

Author

Scott R. Shannon, Aug 26 2020

Keywords

Examples

			T(1,2) = 26 as after a step in one of the four directions toward the tube's side the walk must turn along the side; this eliminates the 2-step straight walk in those four directions, so the total number of walks is 6*5 - 4 = 26.
The table begins:
6 26  98 330 1130  3746 12802  42498  143610  472242  1570714   5110426  16779354...
6 30 146 658 2858 11802 48282 193714  781114 3114890 12508114  49767002 199252346...
6 30 150 722 3450 15930 72522 321794 1415450 6134650 26527690 113725546 487875250...
6 30 150 726 3530 16826 80010 373962 1736538 7946946 36158802 162796866 730521658...
6 30 150 726 3534 16922 81274 386138 1833018 8615906 40370370 187477426 867587114...
6 30 150 726 3534 16926 81386 387834 1851546 8780162 41630146 196172338 923017178...
6 30 150 726 3534 16926 81390 387962 1853738 8806962 41893346 198386594 939630954...
6 30 150 726 3534 16926 81390 387966 1853882 8809714 41930594 198788354 943314378...
6 30 150 726 3534 16926 81390 387966 1853886 8809874 41933970 198838482 943903786...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934146 198842546 943969482...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842738 943974298...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842742 943974506...
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842742 943974510...
		

Crossrefs

Cf. A337401 (start at center of tube's side), A337403 (start at tube's edge), A001412 (w->infinity), A116904, A337023, A259808, A039648.

Formula

For n <= w, T(w,n) = A001412(n).

A336862 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2h X 2h X 2h where the walk starts at the middle of the box's edge.

Original entry on oeis.org

4, 12, 4, 40, 14, 4, 118, 54, 14, 4, 358, 208, 56, 14, 4, 936, 826, 224, 56, 14, 4, 2600, 3232, 936, 226, 56, 14, 4, 6212, 12688, 3862, 956, 226, 56, 14, 4, 16068, 48924, 16196, 4026, 958, 226, 56, 14, 4, 34936, 187276, 67346, 17246, 4050, 958, 226, 56, 14, 4
Offset: 1

Views

Author

Scott R. Shannon, Aug 14 2020

Keywords

Examples

			T(1,2) = 12. A first step along either edge leading to the corner leaves two possible second steps. A first step to the center of either face can be followed by a second step to three edges or to the center of the box, four steps in all. Thus the total number of 2-step walks is 2*2+2*4 = 12.
.
The table begins:
.
4 12 40 118 358  936  2600  6212  16068   34936   83708   163452    357056...
4 14 54 208 826 3232 12688 48924 187276  705196 2627950  9670620  35231628...
4 14 56 224 936 3862 16196 67346 282676 1180326 4950936 20646098  86165926...
4 14 56 226 956 4026 17246 73588 316456 1358518 5860464 25266192 109288486...
4 14 56 226 958 4050 17478 75288 327778 1425340 6236152 27260378 119641050...
4 14 56 226 958 4052 17506 75600 330362 1444544 6360718 28020896 123963354...
4 14 56 226 958 4052 17508 75632 330766 1448280 6391426 28238732 125405300...
4 14 56 226 958 4052 17508 75634 330802 1448788 6396618 28285548 125766436...
4 14 56 226 958 4052 17508 75634 330804 1448828 6397242 28292536 125835068...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397286 28293288 125844228...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293336 125845120...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845172...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845174...
		

Crossrefs

Cf. A259808 (h->infinity), A335806 (h=1), A337023 (start at center of box), A337031 (start at center of face), A337035 (start at corner of box), A001412, A039648.

Formula

For n <= h, T(h,n) = A259808(n).
Row 1 = T(1,n) = A335806(n).
For n >= (2h+1)^3, T(h,n) = 0 as the walk contains more steps than there are available lattice points in the 2h X 2h X 2h box.

A337021 The number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2x2x2 where the walk starts at the center of the box.

Original entry on oeis.org

1, 6, 24, 72, 168, 456, 1032, 2712, 5784, 14640, 29760, 71136, 133344, 291696, 479232, 950880, 1343088, 2375808, 2774832, 4266240, 3909792, 5046672, 3230400, 3316704, 1122000, 808128, 0
Offset: 0

Views

Author

Scott R. Shannon, Aug 11 2020

Keywords

Examples

			a(1) = 6 as the walk is free to move one step in all six axial directions.
a(2) = 24 as after a step in one of the six axial directions the walk must turn along the face of the box; this eliminates the 2-step straight walk in all directions, so the total number of walks is 6*5-6 = 24.
a(26) = 0 as it is not possible to visit all 26 available lattice points when the walk starts from the middle of the box.
		

Crossrefs

Cf. A337023 (other box sizes), A337033 (start at center of face), A335806 (start at middle of edge), A337034 (start at corner of box), A001412, A039648.

Formula

For n>=27 all terms are 0 as the walk contains more steps than there are available lattice points in the 2x2x2 box.

A337031 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2h x 2h x 2h where the walk starts at the center of one of the box's faces.

Original entry on oeis.org

5, 17, 5, 52, 21, 5, 148, 89, 21, 5, 400, 357, 93, 21, 5, 1060, 1424, 405, 93, 21, 5, 2700, 5484, 1789, 409, 93, 21, 5, 6720, 20960, 7705, 1849, 409, 93, 21, 5, 15760, 78412, 33048, 8257, 1853, 409, 93, 21, 5, 36248, 292168, 139032, 37097, 8329, 1853, 409, 93, 21, 5
Offset: 1

Views

Author

Scott R. Shannon, Aug 12 2020

Keywords

Examples

			T(1,2) = 17. Taking the first step right,left,forward or backward hits the box's edge after which the walks has three directions for the second step, giving 4*3 = 12 walks in all. A first step upward can be followed by a second step in five directions. The total number of 2-step walks is therefore 12+5 = 17.
.
The table begins:
.
5 17 52 148  400 1060  2700   6720  15760   36248    77856   163296    312760...
5 21 89 357 1424 5484 20960  78412 292168 1072272  3919000 14145220  50832492...
5 21 93 405 1789 7705 33048 139032 583256 2422480 10053452 41415564 170419680...
5 21 93 409 1849 8257 37097 164533 728808 3194636 13978148 60739156 263711448...
5 21 93 409 1853 8329 37877 171117 776065 3496769 15758504 70593984 315942684...
5 21 93 409 1853 8333 37961 172165 786089 3577129 16326745 74257917 337994448...
5 21 93 409 1853 8333 37965 172261 787445 3591637 16455441 75254865 344977177...
5 21 93 409 1853 8333 37965 172265 787553 3593341 16475617 75451269 346633713...
5 21 93 409 1853 8333 37965 172265 787557 3593461 16477709 75478437 346921841...
5 21 93 409 1853 8333 37965 172265 787557 3593465 16477841 75480957 346957465...
5 21 93 409 1853 8333 37965 172265 787557 3593465 16477845 75481101 346960453...
5 21 93 409 1853 8333 37965 172265 787557 3593465 16477845 75481105 346960609...
5 21 93 409 1853 8333 37965 172265 787557 3593465 16477845 75481105 346960613...
		

Crossrefs

Cf. A116904 (h->infinity), A337033 (h=1), A337023 (start at center of box), A336862 (start at middle of edge), A337035 (start at corner of box), A001412.

Formula

For n <= h, T(h,n) = A116904(n).
Row 1 = T(1,n) = A337033(n).
For n >= (2h+1)^3, T(h,n) = 0 as the walk contains more steps than there are available lattice points in the 2h X 2h X 2h box.

A337401 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section 2w X 2w where the walk starts at the center of the tube's side.

Original entry on oeis.org

5, 19, 21, 72, 91, 93, 258, 383, 407, 409, 926, 1638, 1821, 1851, 1853, 3176, 6856, 8019, 8295, 8331, 8333, 11000, 28810, 35506, 37531, 37921, 37963, 37965, 36988, 119106, 155492, 168399, 171691, 172215, 172263, 172265, 125302, 492766, 683126, 758182, 781811, 786823, 787501, 787555, 787557
Offset: 1

Views

Author

Scott R. Shannon, Aug 26 2020

Keywords

Examples

			T(2,1) = 19 as after a step in one of the two directions toward the adjacent tube side the walk must turn along the side; this eliminates the 2-step straight walk in those two directions, so the total number of walks is 4*4 + 5 - 2 = 19.
The table begins:
5;
19,21;
72,91,93;
258,383,407,409;
926,1638,1821,1851,1853;
3176,6856,8019,8295,8331,8333;
11000,28810,35506,37531,37921,37963,37965;
36988,119106,155492,168399,171691,172215,172263,172265;
125302,492766,683126,758182,781811, 786823,787501,787555,787557;
414518,2013142,2981996,3393526,3545117,3585297,3592551,3593403,3593463,3593465;
		

Crossrefs

Cf. A337400 (start at middle of tube), A337403 (start at tube's edge), A116904 (w->infinity), A001412, A337023, A259808, A039648.

Formula

For w>=n, T(n,w) = A116904(n).

A338125 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined between two infinite planes a distance 2w apart where the walk starts at the middle point between the planes.

Original entry on oeis.org

6, 28, 30, 124, 148, 150, 516, 692, 724, 726, 2156, 3196, 3492, 3532, 3534, 8804, 14324, 16428, 16876, 16924, 16926, 36388, 64076, 76956, 80700, 81332, 81388, 81390, 148452, 282716, 354740, 380964, 387052, 387900, 387964, 387966, 609812, 1251044, 1631420, 1795212, 1843452, 1852716, 1853812, 1853884, 1853886
Offset: 1

Views

Author

Scott R. Shannon, Oct 11 2020

Keywords

Examples

			T(2,1) = 28 as after a step in one of the two directions towards the planes the walk must turn along the plane; this eliminates the 2-step straight walk in those two directions, so the total number of walks is A001412(2) - 2 = 30 - 2 = 28.
The table begins:
6;
28,30;
124,148,150;
516,692,724,726;
2156,3196,3492,3532,3534;
8804,14324,16428,16876,16924,16926;
36388,64076,76956,80700,81332,81388,81390;
148452,282716,354740,380964,387052,387900,387964,387966;
609812,1251044,1631420,1795212,1843452,1852716,1853812,1853884,1853886;
2478484,5493804,7431100,8377908,8712892,8795020,8808420,8809796,8809876,8809878;
		

Crossrefs

Cf. A338126 (start on a plane), A001412 (w->infinity), A001412, A337023, A337400, A039648.

Formula

For w>=n, T(n,w) = A001412(n).

A337403 Table read by antidiagonals: T(w,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a tube of cross section w x w where the walk starts at the tube's edge.

Original entry on oeis.org

4, 12, 4, 36, 14, 4, 98, 54, 14, 4, 274, 200, 56, 14, 4, 702, 744, 224, 56, 14, 4, 1854, 2626, 926, 226, 56, 14, 4, 4614, 9186, 3738, 956, 226, 56, 14, 4, 11778, 31122, 15056, 4014, 958, 226, 56, 14, 4, 28914, 105766, 59092, 17074, 4050, 958, 226, 56, 14, 4
Offset: 1

Views

Author

Scott R. Shannon, Aug 26 2020

Keywords

Examples

			T(1,2) = 12 as after a step in one of the two directions toward the adjacent tube edge the walk must turn along the side; this eliminates the 2-step straight walk in those two directions, so the total number of walks is 2*3 + 2*4 - 2 = 12.
The table begins:
4 12 36  98 274  702  1854  4614  11778   28914   72394   176310    435346...
4 14 54 200 744 2626  9186 31122 105766  351798 1175726  3859350  12729142...
4 14 56 224 926 3738 15056 59092 230254  881850 3367124 12712194  47952018...
4 14 56 226 956 4014 17074 71774 301578 1251362 5170636 21143094  86148002...
4 14 56 226 958 4050 17464 75060 325064 1400650 6040372 25882446 110668184...
4 14 56 226 958 4052 17506 75584 330070 1440668 6321926 27685144 121407404...
4 14 56 226 958 4052 17508 75632 330748 1447916 6386092 28180426 124857572...
4 14 56 226 958 4052 17508 75634 330802 1448768 6396174 28278426 125681952...
4 14 56 226 958 4052 17508 75634 330804 1448828 6397220 28292004 125825794...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397286 28293264 125843600...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293336 125845094...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845172...
4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845174...
		

Crossrefs

Cf. A337400 (start at middle of tube), A337401 (start at center of tube's side) A259808 (w->infinity), A001412, A337023, A259808, A039648.

Formula

For n <= w, T(w,n) = A259808(n).

A338126 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined between two infinite planes a distance w apart where the walk starts on one of the planes.

Original entry on oeis.org

5, 20, 21, 80, 92, 93, 304, 392, 408, 409, 1168, 1684, 1832, 1852, 1853, 4348, 7036, 8084, 8308, 8332, 8333, 16336, 29396, 35752, 37620, 37936, 37964, 37965, 60208, 120776, 155756, 168768, 171808, 172232, 172264, 172265, 223352, 497196, 677856, 758340, 782344, 786972, 787520, 787556, 787557
Offset: 1

Views

Author

Scott R. Shannon, Oct 11 2020

Keywords

Examples

			T(2,1) = 20 as after one step towards the opposite plane the walk must turn along that plane; this eliminates the 2-step straight walk in that direction, so the total number of walks is A116904(2) - 1 = 21 - 1 = 20.
The table begins:
5;
20,21;
80,92,93;
304,392,408,409;
1168,1684,1832,1852,1853;
4348,7036,8084,8308,8332,8333;
16336,29396,35752,37620,37936,37964,37965;
60208,120776,155756,168768,171808,172232,172264,172265;
223352,497196,677856,758340,782344,786972,787520,787556,787557;
817852,2026220,2920764,3379476,3545108,3586040,3592736,3593424,3593464,3593465;
		

Crossrefs

Cf. A338125 (start between planes), A116904 (w->infinity), A001412, A337023, A337400, A039648.

Formula

For w>=n, T(n,w) = A116904(n).

A338127 Triangle read by rows: T(n,w) is the number of n-step self avoiding walks on a 3D cubic lattice confined between two infinite horizontal planes a distance 2w apart and an orthogonal plane on the y-z axes, where the walk starts at the middle point between the planes on the y-z plane.

Original entry on oeis.org

5, 19, 21, 73, 91, 93, 275, 383, 407, 409, 1075, 1639, 1821, 1851, 1853, 4133, 6881, 8019, 8295, 8331, 8333, 16249, 29155, 35507, 37531, 37921, 37963, 37965, 63293, 122491, 155525, 168399, 171691, 172215, 172263, 172265, 249445, 519351, 683711, 758183, 781811, 786823, 787501, 787555, 787557
Offset: 1

Views

Author

Scott R. Shannon, Oct 11 2020

Keywords

Examples

			T(2,1) = 19 as after a step in one of the two directions towards the horizontal planes the walk must turn along the planes; this eliminates the 2-step straight walks in those two directions, so the total number of walks is A116904(2) - 2 = 21 - 2 = 19.
The table begins:
5;
19, 21;
73, 91, 93;
275, 383, 407, 409;
1075, 1639, 1821, 1851, 1853;
4133, 6881, 8019, 8295, 8331, 8333;
16249, 29155, 35507, 37531, 37921, 37963, 37965;
63293, 122491, 155525, 168399, 171691, 172215, 172263, 172265;
249445, 519351, 683711, 758183, 781811, 786823, 787501, 787555, 787557;
		

Crossrefs

Cf. A116904 (w->infinity), A338125, A001412, A337023, A337400, A039648.

Formula

For w>=n, T(n,w) = A116904(n).
Showing 1-9 of 9 results.