A337069 Number of strict factorizations of the superprimorial A006939(n).
1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0
Keywords
Examples
The a(3) = 34 factorizations: 2*3*4*15 2*3*60 2*180 360 2*3*5*12 2*4*45 3*120 2*3*6*10 2*5*36 4*90 2*4*5*9 2*6*30 5*72 3*4*5*6 2*9*20 6*60 2*10*18 8*45 2*12*15 9*40 3*4*30 10*36 3*5*24 12*30 3*6*20 15*24 3*8*15 18*20 3*10*12 4*5*18 4*6*15 4*9*10 5*6*12 5*8*9
Crossrefs
A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A317829 is the non-strict version.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A322583 counts factorizations into factorials.
Programs
-
Mathematica
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; Table[Length[stfa[chern[n]]],{n,0,3}]
-
PARI
\\ See A318286 for count. a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020
Formula
Extensions
a(7)-a(13) from Andrew Howroyd, Sep 01 2020
Comments