cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337077 Binary Niven numbers (A049445) with a record gap to the next binary Niven number.

Original entry on oeis.org

1, 2, 12, 24, 96, 690, 1386, 3024, 3738, 3794, 5544, 22834, 57278, 68908, 89060, 196240, 360000, 388421, 524160, 1556360, 1572480, 2359140, 3929940, 8057711, 11484900, 15201585, 16115505, 19910436, 32444160, 7348411575, 16097143458, 33273395232, 51333952011
Offset: 1

Views

Author

Amiram Eldar, Aug 14 2020

Keywords

Comments

The corresponding record gaps are 1, 2, 4, 8, 12, 18, 26, 27, 33, 38, 42, 44, 46, 50, 58, 68, 74, 77, 103, 109, 122, 137, 156, 157, 165, 189, 191, 204, 240, 265, 267, 312, 333, ...
De Koninck, Doyon and Kátai (2003) proved that the asymptotic density of the Niven numbers in any base >= 2 is 0. Therefore, the asymptotic density of the binary Niven numbers is 0 and this sequence is infinite.

Examples

			The first 8 binary Niven numbers are 1, 2, 4, 6, 8, 10, 12 and 16. The differences between them are 1, 2, 2, 2, 2, 2 and 4. The record gaps, 1, 2 and 4, occur at 1, 2 and 12.
		

Crossrefs

Programs

  • Mathematica
    binNivenQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; gapmax = 0; n1 = 1; s = {}; Do[If[binNivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^6}]; s

A347496 Primorial base Niven numbers (A333426) with a record gap to the next primorial base Niven number.

Original entry on oeis.org

1, 2, 9, 12, 25, 50, 120, 344, 400, 770, 1120, 3920, 13566, 13734, 19845, 22748, 148148, 167854, 176220, 889896, 2946216, 3685416, 5072256, 7139280, 8521056, 9058900, 9625336, 17825857, 19392072, 27504848, 76952788, 106691001, 162789696, 198582784, 212847225
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2021

Keywords

Comments

The corresponding gaps are 1, 2, 3, 4, 5, 10, 12, 16, 20, 34, 37, 48, 54, 66, 75, 121, 132, 146, 180, 238, 241, 248, 288, 302, 314, 332, 336, 343, 348, 400, 476, 479, 484, 496, 500, ...

Examples

			The first 8 primorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
		

Crossrefs

Programs

  • Mathematica
    max = 7; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; sumdig[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; primoNivenQ[n_] := Divisible[n, sumdig[n]]; gapmax = 0; n1 = 1; s = {}; Do[If[primoNivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, nmax}]; s

A347495 Factorial base Niven numbers (A118363) with a record gap to the next factorial base Niven number.

Original entry on oeis.org

1, 2, 9, 12, 30, 40, 60, 192, 224, 318, 550, 640, 1136, 1989, 4875, 4980, 23355, 24272, 24378, 40131, 60192, 63872, 80472, 238680, 280140, 2027340, 2872620, 3622068, 13400475, 21293094, 25399080, 28584626, 111020840, 278690360, 355419734, 398884590, 834592590
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2021

Keywords

Comments

The corresponding gaps are 1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 20, 32, 34, 39, 52, 55, 60, 67, 82, 85, 90, 96, 154, 174, 210, 216, 222, 268, 297, 318, 336, 346, 430, 466, 517, 546, 604, ...

Examples

			The first 8 factorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
		

Crossrefs

Programs

  • Mathematica
    fivenQ[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; Divisible[n, n - s]]; gapmax = 0; n1 = 1; s = {}; Do[If[fivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^5}]; s (* after Jean-François Alcover at A034968 *)

A376028 Zeckendorf-Niven numbers (A328208) with a record gap to the next Zeckendorf-Niven number.

Original entry on oeis.org

1, 6, 18, 30, 36, 48, 208, 5298, 6132, 6601, 8280, 12228, 17052, 68220, 113990, 120504, 438570, 1015416, 1343232, 1848400, 5338548, 12727143, 83877810, 330963120, 409185360, 418561770, 2428646640, 2834120595, 2876557200, 2940992640, 7218753758, 7306145012, 7609637140
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2024

Keywords

Comments

The corresponding record gaps are 1, 2, 3, 4, 6, 7, 20, ... (see the link for more values).
Ray (2005) and Ray and Cooper (2006) proved that the asymptotic density of the Zeckendorf-Niven numbers is 0. Therefore, this sequence is infinite.

Examples

			6 is a term since it is a Zeckendorf-Niven number, and the next Zeckendorf-Niven number is 8, with a gap 8 - 6 = 2, which is a record since all the numbers below 6 are also Zeckendorf-Niven numbers.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Similar sequences: A337076, A337077, A347495, A347496, A376029.

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; znQ[n_] := Divisible[n, z[n]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[znQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]

A376029 Tribonacci-Niven numbers (A352089) with a record gap to the next tribonacci-Niven number.

Original entry on oeis.org

1, 2, 8, 48, 140, 244, 620, 705, 1395, 6210, 9656, 14322, 52024, 88128, 95589, 119440, 151130, 325105, 407128, 472790, 520971, 686103, 4456608, 7066416, 13207389, 15488160, 23381160, 42317212, 49496700, 53564016, 128163495, 165750096, 387900480, 421730960, 485880806
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2024

Keywords

Comments

The corresponding record gaps are 1, 2, 4, 8, 9, 12, 15, 20, ... (see the link for more values).
Ray (2005) and Ray and Cooper (2006) proved that the asymptotic density of the tribonacci-Niven numbers is 0. Therefore, this sequence is infinite.

Examples

			The first 7 tribonacci-Niven numbers are 1, 2, 4, 6, 7, 8 and 12. The gaps between them are 1, 2, 2, 1, 1 and 4, and the record gaps, 1, 2 and 4 occur after 1, 2 and 8, the first 3 terms of this sequence.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Similar sequences: A337076, A337077, A347495, A347496, A376028.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; tnQ[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; s++; m -= t[k]; k = 1]; Divisible[n, s]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[tnQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]
Showing 1-5 of 5 results.