cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337076 Niven numbers (A005349) with a record gap to the next Niven number.

Original entry on oeis.org

1, 10, 12, 63, 72, 90, 288, 378, 558, 2889, 3784, 6480, 19872, 28971, 38772, 297864, 478764, 589860, 989867, 2879865, 9898956, 49989744, 88996914, 689988915, 879987906, 989888823, 2998895823, 6998899824, 8889999624, 8988988866, 9879997824, 18879988824, 286889989806
Offset: 1

Views

Author

Amiram Eldar, Aug 14 2020

Keywords

Comments

The corresponding record gaps are 1, 2, 6, 7, 8, 10, 12, 14, 18, 23, 32, 36, 44, 45, 54, 60, 66, 72, 88, 90, 99, 108, 126, 135, 144, 150, 153, 192, 201, 234, 258, 276, 294, ...
Kennedy and Cooper (1984) proved that the asymptotic density of the Niven numbers is 0. Therefore, this sequence is infinite.
De Koninck and Doyon proved that for sufficiently large k the least number m such that the interval[m, m+k-1] does not contain any Niven numbers is < (100*(k+2))^(k+3).

Examples

			10 is a term since it is a Niven number, and the next Niven number is 12, with a gap 12 - 10 = 2, which is a record, since all the numbers below 10 are also Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; gapmax = 0; n1 = 1; s = {}; Do[If[nivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^6}]; s

A347496 Primorial base Niven numbers (A333426) with a record gap to the next primorial base Niven number.

Original entry on oeis.org

1, 2, 9, 12, 25, 50, 120, 344, 400, 770, 1120, 3920, 13566, 13734, 19845, 22748, 148148, 167854, 176220, 889896, 2946216, 3685416, 5072256, 7139280, 8521056, 9058900, 9625336, 17825857, 19392072, 27504848, 76952788, 106691001, 162789696, 198582784, 212847225
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2021

Keywords

Comments

The corresponding gaps are 1, 2, 3, 4, 5, 10, 12, 16, 20, 34, 37, 48, 54, 66, 75, 121, 132, 146, 180, 238, 241, 248, 288, 302, 314, 332, 336, 343, 348, 400, 476, 479, 484, 496, 500, ...

Examples

			The first 8 primorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
		

Crossrefs

Programs

  • Mathematica
    max = 7; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; sumdig[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; primoNivenQ[n_] := Divisible[n, sumdig[n]]; gapmax = 0; n1 = 1; s = {}; Do[If[primoNivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, nmax}]; s

A347495 Factorial base Niven numbers (A118363) with a record gap to the next factorial base Niven number.

Original entry on oeis.org

1, 2, 9, 12, 30, 40, 60, 192, 224, 318, 550, 640, 1136, 1989, 4875, 4980, 23355, 24272, 24378, 40131, 60192, 63872, 80472, 238680, 280140, 2027340, 2872620, 3622068, 13400475, 21293094, 25399080, 28584626, 111020840, 278690360, 355419734, 398884590, 834592590
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2021

Keywords

Comments

The corresponding gaps are 1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 20, 32, 34, 39, 52, 55, 60, 67, 82, 85, 90, 96, 154, 174, 210, 216, 222, 268, 297, 318, 336, 346, 430, 466, 517, 546, 604, ...

Examples

			The first 8 factorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
		

Crossrefs

Programs

  • Mathematica
    fivenQ[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; Divisible[n, n - s]]; gapmax = 0; n1 = 1; s = {}; Do[If[fivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^5}]; s (* after Jean-François Alcover at A034968 *)

A376028 Zeckendorf-Niven numbers (A328208) with a record gap to the next Zeckendorf-Niven number.

Original entry on oeis.org

1, 6, 18, 30, 36, 48, 208, 5298, 6132, 6601, 8280, 12228, 17052, 68220, 113990, 120504, 438570, 1015416, 1343232, 1848400, 5338548, 12727143, 83877810, 330963120, 409185360, 418561770, 2428646640, 2834120595, 2876557200, 2940992640, 7218753758, 7306145012, 7609637140
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2024

Keywords

Comments

The corresponding record gaps are 1, 2, 3, 4, 6, 7, 20, ... (see the link for more values).
Ray (2005) and Ray and Cooper (2006) proved that the asymptotic density of the Zeckendorf-Niven numbers is 0. Therefore, this sequence is infinite.

Examples

			6 is a term since it is a Zeckendorf-Niven number, and the next Zeckendorf-Niven number is 8, with a gap 8 - 6 = 2, which is a record since all the numbers below 6 are also Zeckendorf-Niven numbers.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Similar sequences: A337076, A337077, A347495, A347496, A376029.

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; znQ[n_] := Divisible[n, z[n]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[znQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]

A376029 Tribonacci-Niven numbers (A352089) with a record gap to the next tribonacci-Niven number.

Original entry on oeis.org

1, 2, 8, 48, 140, 244, 620, 705, 1395, 6210, 9656, 14322, 52024, 88128, 95589, 119440, 151130, 325105, 407128, 472790, 520971, 686103, 4456608, 7066416, 13207389, 15488160, 23381160, 42317212, 49496700, 53564016, 128163495, 165750096, 387900480, 421730960, 485880806
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2024

Keywords

Comments

The corresponding record gaps are 1, 2, 4, 8, 9, 12, 15, 20, ... (see the link for more values).
Ray (2005) and Ray and Cooper (2006) proved that the asymptotic density of the tribonacci-Niven numbers is 0. Therefore, this sequence is infinite.

Examples

			The first 7 tribonacci-Niven numbers are 1, 2, 4, 6, 7, 8 and 12. The gaps between them are 1, 2, 2, 1, 1 and 4, and the record gaps, 1, 2 and 4 occur after 1, 2 and 8, the first 3 terms of this sequence.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Similar sequences: A337076, A337077, A347495, A347496, A376028.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; tnQ[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; s++; m -= t[k]; k = 1]; Divisible[n, s]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[tnQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]
Showing 1-5 of 5 results.