A337098 Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.
60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
Offset: 1
Examples
a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
References
- Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
Links
- David A. Corneth, Table of n, a(n) for n = 1..504
- Fred Richman, Sums of Three Cubes
Programs
-
Maple
with(numtheory):divisors(240); for n from 1 to 52 do : ii:=0: for q from 6 by 6 to 10^8 while(ii=0) do: d:=divisors(q):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: else fi: od: od: od: od: if it = n then ii:=1: printf (`%d %d \n`,n,q): else fi: od: od:
-
Mathematica
With[{s = Array[Count[Subsets[Divisors[#], {4}]^3, ?(#1 + #2 + #3 == #4 & @@ # &)] &, 10^4]}, Rest@ Values[#][[1 ;; 1 + LengthWhile[Differences@ Keys@ #, # == 1 &] ]] &@ KeySort@ PositionIndex[s][[All, 1]]] (* _Michael De Vlieger, Sep 18 2020 *)
-
Python
from itertools import combinations from sympy import divisors def A337098(n): k = 1 while True: if n == sum(1 for x in combinations((d**3 for d in divisors(k)),4) if sum(x[:-1]) == x[-1]): return k k += 1 # Chai Wah Wu, Sep 25 2020
Extensions
a(13)-a(22) from Chai Wah Wu, Sep 25 2020
More terms from David A. Corneth, Sep 26 2020
Comments