A337111 Number of length four 1..n vectors that contain their geometric mean.
1, 2, 3, 16, 17, 18, 19, 56, 105, 106, 107, 144, 145, 146, 147, 208, 209, 306, 307, 320, 321, 322, 323, 432, 529, 530, 723, 736, 737, 738, 739, 968, 969, 970, 971, 1176, 1177, 1178, 1179, 1288, 1289, 1290, 1291, 1304, 1401, 1402, 1403, 1608, 1777, 2018, 2019, 2032
Offset: 1
Examples
For n = 2 the a(2) = 2 solutions are: (1,1,1,1) and (2,2,2,2). For n = 4 the a(4) = 16 solutions are: (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4), and the 12 permutations of (1, 2, 2, 4). For n = 40, the a(40)-a(39) = 109 new solutions are: (40,40,40,40), the 24 permutations of (1, 10, 25, 40), the 12 permutations of (5, 5, 10, 40), the 12 permutations of (5, 20, 40, 40), the 24 permutations of (8, 20, 25, 40), the 12 permutations of (10, 20, 20, 40), and the 24 permutations of (25, 27, 30, 40).
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Hywel Normington, Python code, 2020.
- Hywel Normington, Julia code, 2023.
Programs
-
PARI
first(n) = { my(res = vector(n)); s = 0; for(i = 1, n, s += b(i); res[i] = s; ); res } b(n) = {my(resa = 1); my(s = factorback(factor(n)[, 1])); for(i = 1, n \ s - 1, s4 = (s*i)^3; if(s4 % n == 0, c = tuples((s*i)^3/n, s*i, n); for(i = 1, #c, resa+=qperms(c[i]) ) ) ); resa } qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1,if(v[i]==v[i+1],t++,r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)} tuples(n, s, u) = {my(res = List(), u4n, d, i); d = divisors(n); i = (#d + 1) \ 2; while(i > 0 && d[#d - i + 1] <= u, c = vecsort([d[i], d[#d - i + 1], s, u]); listput(res, c); i--); res} \\ David A. Corneth, Aug 28 2020
Formula
Empirical: if A000189(n) = 1 then a(n) = a(n-1) + 1.
From David A. Corneth, Aug 25 2020: (Start)
The above holds. That is: if x^3 == 0 (mod n) has only one solution then a(n) = a(n-1) + 1. Proof:
Let (a, b, c, n) be such a tuple. Let without loss of generality c be the geometric mean of the tuple. Then a*b*c*n = c^4 and as c is not 0 we have c^3 = a*b*n. So then c^3 == 0 (mod n). If c^3 == 0 (mod n) has only 1 solution then c = n. This gives the tuple (n, n, n, n) which has 1 permutation. So giving a(n) = a(n-1) + 1. (End)
a(n) - a(n-1) == 1 (mod 12). - Hywel Normington, Sep 28 2020
Comments