cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337126 Irregular triangular array read by rows. T(n,k) is the number of permutations of {1,2,...,n} with descent set {1,3,5,...,m} (where m is the greatest odd integer less than n) that have exactly k inversions, n=0, k=0, or n>0, 0<=k<=ceiling((n-1)^2/2).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 0, 1, 2, 5, 7, 9, 10, 10, 8, 5, 3, 1, 0, 0, 0, 1, 3, 7, 13, 19, 26, 32, 35, 35, 32, 26, 19, 13, 7, 3, 1, 0, 0, 0, 0, 1, 3, 9, 18, 32, 50, 72, 95, 117, 134, 143, 145, 138, 122, 101, 78, 55, 36, 21, 10, 4, 1
Offset: 0

Views

Author

Geoffrey Critzer, Aug 17 2020

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  0, 1;
  0, 1, 1;
  0, 0, 1, 1, 2, 1;
  0, 0, 1, 2, 3, 4, 3, 2, 1;
  0, 0, 0, 1, 2, 5, 7, 9, 10, 10, 8, 5, 3, 1;
  ...
T(6,5) = 5 because we have: {2, 1, 5, 4, 6, 3}, {2, 1, 6, 3, 5, 4},
  {3, 1, 5, 2, 6, 4}, {3, 2, 4, 1, 6, 5}, {4, 1, 3, 2, 6, 5}.
		

References

  • R. Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge University Press (2012), p.295.

Crossrefs

Cf. A000111 (row sums), A337193 (total number of inversions).

Programs

  • Maple
    b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1, add(
          x^`if`(t=0, o-1+j, u-j)*b(o-1+j, u-j, 1-t), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 17 2020
  • Mathematica
    Table[a = Drop[Subsets[Table[i, {i, 1, n - 1, 2}]], 1];f[list_] := (-1)^(Floor[n/2] - Length[list]) QBinomial[n, list[[1]], q] Product[
         QBinomial[n - list[[i]], list[[i + 1]] - list[[i]], q], {i, 1,
          Length[list] - 1}]; CoefficientList[Expand[FunctionExpand[Total[Map[f, a]] + (-1)^(Floor[n/2])]], q], {n, 0, 8}] // Grid
    (* Second program: *)
    b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1, Sum[x^If[t == 0, o - 1 + j, u - j]*b[o - 1 + j, u - j, 1 - t], {j, 1, u}]]];
    T[n_] := CoefficientList[b[n, 0, 0], x];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..ceiling((n-1)^2/2)} k * T(n,k) = A337193(n).