A337135 a(1) = 1; for n > 1, a(n) = Sum_{d|n, d <= sqrt(n)} a(d).
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 4, 1, 4, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 3, 2, 1, 7, 2, 3, 2, 4, 1, 5, 2, 5, 2, 2, 1, 8, 1, 2, 3, 6, 2, 5, 1, 4, 2, 4, 1, 9, 1, 2, 3, 4, 2, 5, 1, 7, 4, 2, 1, 8, 2, 2, 2, 6, 1, 8, 2, 4, 2, 2, 2
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Mar 05 2021: (Start) The a(n) chains for n = 1, 2, 4, 12, 16, 24, 36, 60: 1 2/1 4/1 12/1 16/1 24/1 36/1 60/1 4/2/1 12/2/1 16/2/1 24/2/1 36/2/1 60/2/1 12/3/1 16/4/1 24/3/1 36/3/1 60/3/1 16/4/2/1 24/4/1 36/4/1 60/4/1 24/4/2/1 36/6/1 60/5/1 36/4/2/1 60/6/1 36/6/2/1 60/4/2/1 60/6/2/1 The a(n) factorizations for n = 2, 4, 12, 16, 24, 36, 60: 2 4 12 16 24 36 60 2*2 2*6 2*8 3*8 4*9 2*30 3*4 4*4 4*6 6*6 3*20 2*2*4 2*12 2*18 4*15 2*2*6 3*12 5*12 2*2*9 6*10 2*3*6 2*2*15 2*3*10 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
Crossrefs
The restriction to powers of 2 is A018819.
Not requiring inferiority gives A074206 (ordered factorizations).
The strictly inferior version is A342083.
The strictly superior version is A342084.
The weakly superior version is A342085.
A001055 counts factorizations.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
A342086 counts strict factorizations of divisors.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, add( `if`(d<=n/d, a(d), 0), d=numtheory[divisors](n))) end: seq(a(n), n=1..128); # Alois P. Heinz, Jun 24 2021
-
Mathematica
a[1] = 1; a[n_] := a[n] = DivisorSum[n, a[#] &, # <= Sqrt[n] &]; Table[a[n], {n, 95}] (* second program *) asc[n_]:=Prepend[#,n]&/@Prepend[Join@@Table[asc[d],{d,Select[Divisors[n],#
Gus Wiseman, Mar 05 2021 *)
Formula
G.f.: Sum_{k>=1} a(k) * x^(k^2) / (1 - x^k).
a(2^n) = A018819(n). - Gus Wiseman, Mar 08 2021
Comments