cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336983 Bogota numbers that are not Colombian numbers.

Original entry on oeis.org

4, 11, 16, 24, 25, 36, 39, 49, 56, 81, 88, 93, 96, 111, 119, 138, 144, 164, 171, 192, 224, 242, 250, 297, 336, 339, 366, 393, 408, 422, 448, 456, 488, 497, 516, 520, 522, 564, 575, 696, 704, 744, 755, 777, 792, 795, 819, 848, 884, 900, 912, 933, 944, 966, 992
Offset: 1

Views

Author

Bernard Schott, Aug 10 2020

Keywords

Comments

Equivalently, numbers m that are of the form k + sum of digits of k for some k (A176995), and also of the form q * product of digits of q for some q (A336826).
Repunits are trivially Bogota numbers but the indices m of the repunits R_m that are not Colombian numbers are in A337139; also, all known repunit primes are terms (A004023) [see examples for primes R_2, R_19 and R_23].
35424 is the smallest term that belongs to both A230094 and A336944 (see last example).

Examples

			R_2 = 11 = 10 + (1+0) = 11 * (1*1) is a term;
24 = 21 + (2+1) = 12 * (1*2) is a term;
39 = 33 + (3+3) = 13 * (1*3) is a term;
R_19 = 1111111111111111079 + (16*1+7+9) = 1111111111111111111 * (1^19) hence R_19 is a term;
R_23 = 11111111111111111111077 + (20*1+7+7) = 11111111111111111111111 * (1^23) hence R_23 is a term;
42 = 21 * (2*1) is a Bogota number but there does not exist m < 42 such that 42 = m + sum of digits of m, hence 42 that is also a Colombian number is not a term.
35424 = 35406 + (3+5+4+0+6) = 35397 + (3+5+3+9+7) = 2214 * (2*2*1*4) = 492 * (4*9*2).
		

Crossrefs

Intersection of A176995 and A336826.
Cf. A003052 (Colombian), A336984 (Bogota and Colombian), A336985 (Colombian not Bogota), A336986 (not Colombian and not Bogota).

Programs

  • Mathematica
    m = 1000; Intersection[Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]] (* Amiram Eldar, Aug 10 2020 *)
  • PARI
    lista(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ Michel Marcus, Aug 20 2020

A337208 Indices m of repunits R_m that are Colombian (or self) numbers.

Original entry on oeis.org

1, 4, 6, 17, 28, 39, 50, 61, 72, 83, 94, 109, 120, 131, 142, 153, 164, 175, 186, 197, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 300, 311, 322, 333, 344, 355, 366, 377, 388, 399, 401, 412, 423, 434, 445, 456, 467, 478, 489, 500, 502, 513, 524, 535, 546, 557
Offset: 1

Views

Author

David A. Corneth, Aug 19 2020

Keywords

Crossrefs

Cf. A002275 (repunits), A003052 (Colombian (or self)), A004022 (repunit primes), A004023 (indices of repunit primes), complement of A337139.

Programs

  • PARI
    upto(n)= {my(res = List()); for(i = 1, n, if(is(i), listput(res, i); print1(i", "))); res}
    is(n) = {c = 10^n \ 9; is_A003052(c)}
    is_A003052(n)={for(i=1, min(n\2, 9*#digits(n)), sumdigits(n-i)==i && return); n} \\ from M. F. Hasler, Mar 20 2011

A337733 Numbers that can be written as (k + sum of digits of k) for some k, also as (m + product of digits of m) for some m, and finally as (q * product of digits of q) for some q.

Original entry on oeis.org

4, 16, 24, 56, 81, 88, 138, 144, 192, 242, 250, 297, 366, 408, 456, 516, 520, 522, 564, 575, 704, 744, 777, 795, 819, 884, 900, 912, 966, 1008, 1053, 1071, 1080, 1104, 1134, 1250, 1312, 1316, 1375, 1512, 1520, 1608, 1644, 1680, 1712, 1778, 1928, 1950, 2025, 2048, 2072
Offset: 1

Views

Author

Bernard Schott, Sep 18 2020

Keywords

Comments

Equivalently, Bogotá numbers that are not Colombian and that can be written as (m + product of digits of m) for some m.
The only primes that can belong to this sequence are repunits > 11 whose indices are in A004023. It is known that these primes belong to A336983, but do they belong also to A337718?

Examples

			4 = 2 + 2 = 2 + 2 = 2 * 2;
16 = 8 + 8 = 8 + 8 = 4 * 4;
24 = 21 + (2+1) = 17 + (1*7) = 12 * (1*2);
56 = 46 + (4+6) = 51 + (5*1) = 14 * (1*4);
81 = 72 + (7+2) = 63 + (6*3) = 9 * 9.
		

Crossrefs

Intersection of A176995, A336826 and A337718.
Intersection of A336983 and A337718.

Programs

  • Mathematica
    m = 2100; Select[Intersection @@ Union /@ Transpose[Table[{n + Plus @@ (d = IntegerDigits[n]), n + (p = Times @@ d), n*p}, {n, 1, m}]], # <= m &] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    isok(m) = {if (m==0, return (1)); for (k=1, m,  if (k+vecprod(digits(k)) == m, return (1)); ); } \\ A337718
    listb(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ A336983
    lista(nn) = select(x->isok(x), listb(nn)); \\ Michel Marcus, Sep 18 2020

Extensions

More terms from Michel Marcus, Sep 18 2020
Showing 1-3 of 3 results.