A337231 Odd composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number.
231, 323, 377, 1443, 1551, 1891, 2737, 2849, 3289, 3689, 3827, 4181, 4879, 5777, 6479, 6601, 6721, 7743, 8149, 9879, 10877, 11663, 13201, 13981, 15251, 15301, 17119, 17261, 17711, 18407, 19043, 20999, 23407, 25877, 27071, 27323, 29281, 30889, 34561, 34943, 35207
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
- D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]
-
PARI
lista(nn) = my(list=List()); forcomposite(c=1, nn, if ((c%2) && (Mod(fibonacci(c), c)^2 == 1), listput(list, c))); Vec(list); \\ Michel Marcus, Sep 29 2023
Comments