cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337231 Odd composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number.

Original entry on oeis.org

231, 323, 377, 1443, 1551, 1891, 2737, 2849, 3289, 3689, 3827, 4181, 4879, 5777, 6479, 6601, 6721, 7743, 8149, 9879, 10877, 11663, 13201, 13981, 15251, 15301, 17119, 17261, 17711, 18407, 19043, 20999, 23407, 25877, 27071, 27323, 29281, 30889, 34561, 34943, 35207
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A000045(p)^2==1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p)==1 (mod p) whenever p is prime and b=-1.
For a=1, b=-1, U(n) recovers A000045(n) (Fibonacci numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]
  • PARI
    lista(nn) = my(list=List()); forcomposite(c=1, nn, if ((c%2) && (Mod(fibonacci(c), c)^2 == 1), listput(list, c))); Vec(list); \\ Michel Marcus, Sep 29 2023