cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370337 Expansion of Product_{n>=1} (1 - 2^(n-1)*x^n) * (1 + 2^(n-1)*x^n)^2.

Original entry on oeis.org

1, 1, 1, 5, 6, 22, 40, 108, 192, 536, 1072, 2528, 5344, 12288, 26624, 61312, 129024, 286720, 646656, 1389568, 3028992, 6717440, 14708736, 31604736, 69763072, 150110208, 329809920, 714473472, 1546649600, 3324772352, 7332954112, 15626403840, 33840693248, 73194799104, 158456610816
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2024

Keywords

Comments

Compare to Product_{n>=1} (1 - 2^n*x^n) * (1 + 2^n*x^n)^2 = Sum_{n>=0} 2^(n*(n+1)/2) * x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 6*x^4 + 22*x^5 + 40*x^6 + 108*x^7 + 192*x^8 + 536*x^9 + 1072*x^10 + 2528*x^11 + 5344*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 2*x^2)*(1 + 2*x^2)^2 * (1 - 4*x^3)*(1 + 4*x^3)^2 * (1 - 8*x^4)*(1 + 8*x^4)^2 * ... * (1 - 2^(n-1)*x^n)*(1 + 2^(n-1)*x^n)^2 * ...
Compare A(x) to the series that results from a similar infinite product:
(1 - 2*x)*(1 + 2*x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 8*x^3)*(1 + 8*x^3)^2 * (1 - 16*x^4)*(1 + 16*x^4)^2 * ... = 1 + 2*x + 8*x^3 + 64*x^6 + 1024*x^10 + 32768*x^15 + 2097152*x^21 + 268435456*x^28 + 68719476736*x^36 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[8*QPochhammer[1/2, 2*x] * QPochhammer[-1/2, 2*x]^2/9, {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 26 2024 *)
  • PARI
    {a(n) = polcoeff( prod(k=1,n, (1 - 2^(k-1)*x^k) * (1 + 2^(k-1)*x^k)^2 +x*O(x^n)), n)}
    for(n=0,40, print1(a(n),", "))

Formula

a(n) ~ c^(1/4) * 2^n * exp(sqrt(c*n)) / (3*sqrt(Pi)*n^(3/4)), where c = 2*log(2)^2 - Pi^2/3 - 8*polylog(2,-1/2) = Pi^2 + 6*log(2)^2 + 8*polylog(2,-2) = 1.258351549529119595933889966687474131697... - Vaclav Kotesovec, Feb 26 2024

A352402 Expansion of Product_{k>=1} 1 / (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, -1, -1, -3, -1, -7, -1, -15, 31, -63, 159, -95, 671, -287, 3231, -2975, 15519, -7839, 44191, -34975, 224415, -291999, 863391, -990367, 2927775, -4902047, 12561567, -27225247, 56470687, -102640799, 152153247, -422620319, 877243551, -2278272159, 3357125791
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 2^(n - k), {k, 0, n}], {n, 0, 34}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 2^(n-k), where p(n,k) is the number of partitions of n into k parts.

A352786 Expansion of Product_{k>=1} (1 - 3^(k-1)*x^k).

Original entry on oeis.org

1, -1, -3, -6, -18, -27, -108, -81, -486, 0, -1458, 8748, -6561, 118098, 118098, 1003833, 1417176, 11691702, 9565938, 105225318, 114791256, 746143164, 1076168025, 7231849128, 2324522934, 58113073350, 45328197213, 334731302496, 146444944842, 3263630199336, -3012581722464
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 3^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 30}]

Formula

a(n) = Sum_{k=0..A003056(n)} (-1)^k * q(n,k) * 3^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
Showing 1-3 of 3 results.