A337402 Decimal expansion of the length of third shortest diagonal in a regular 12-gon with unit edge length.
3, 3, 4, 6, 0, 6, 5, 2, 1, 4, 9, 5, 1, 2, 3, 1, 6, 2, 2, 3, 0, 1, 1, 7, 5, 1, 2, 3, 6, 6, 7, 4, 9, 2, 8, 1, 3, 8, 3, 7, 4, 8, 1, 5, 5, 3, 3, 9, 3, 7, 5, 7, 1, 7, 3, 9, 8, 1, 3, 6, 5, 8, 9, 0, 6, 1, 1, 5, 7, 8, 9, 0, 6, 4, 2, 1, 8, 1, 8, 0, 7, 1, 5, 4, 5, 5, 1
Offset: 1
Examples
3.34606521495123162230117512366749281383748155339375...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane and Gavin A. Theobald, On Dissecting Polygons into Rectangles, arXiv:2309.14866 [math.CO], 2023. See Eq. (2.3).
- I. J. Zucker, G. S. Joyce, Special values of the hypergeometric series II, Math. Proc. Cam. Phil. Soc. 131 (2001) 309 eq (8.9)
Programs
-
Mathematica
First[RealDigits[Sqrt[6+3Sqrt[3]],10,100]] (* Paolo Xausa, Oct 19 2023 *)
-
PARI
sqrt(6 + 3*sqrt(3)) \\ Michel Marcus, Aug 26 2020
Formula
Equals sin(Pi/3)/sin(Pi/12) = sqrt(2) + 2*cos(Pi/12) = sqrt(3*cot(Pi/12)).
Equals sqrt(6 + 3*sqrt(3)) = sqrt(6)/(-1+sqrt(3)) = (3+sqrt(3))/sqrt(2).
Equals 3*A145439.
Equals Gamma(1/24)*Gamma(11/24)/(Gamma(5/24)*Gamma(7/24)) [Zucker] - R. J. Mathar, Jun 24 2024
Comments