A337389
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt((1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) / (2 * (1-2*(k+4)*x+((k-4)*x)^2))).
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 19, 20, 1, 5, 34, 141, 70, 1, 6, 51, 328, 1107, 252, 1, 7, 70, 587, 3334, 8953, 924, 1, 8, 91, 924, 7123, 34904, 73789, 3432, 1, 9, 114, 1345, 12870, 89055, 372436, 616227, 12870, 1, 10, 139, 1856, 20995, 184756, 1135005, 4027216, 5196627, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, ...
6, 19, 34, 51, 70, 91, ...
20, 141, 328, 587, 924, 1345, ...
70, 1107, 3334, 7123, 12870, 20995, ...
252, 8953, 34904, 89055, 184756, 337877, ...
-
T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
-
{T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n, 2*j))}
A337464
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1+2*(k-4)*x+((k+4)*x)^2) * (1-(k+4)*x+sqrt(1+2*(k-4)*x+((k+4)*x)^2)) )).
Original entry on oeis.org
1, 1, 6, 1, 5, 30, 1, 4, 11, 140, 1, 3, -6, -29, 630, 1, 2, -21, -120, -365, 2772, 1, 1, -34, -139, -266, -1409, 12012, 1, 0, -45, -92, 531, 2520, -155, 51480, 1, -1, -54, 15, 1654, 6489, 17380, 29485, 218790, 1, -2, -61, 176, 2755, 4828, -9723, -13104, 170035, 923780
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
6, 5, 4, 3, 2, 1, ...
30, 11, -6, -21, -34, -45, ...
140, -29, -120, -139, -92, 15, ...
630, -365, -266, 531, 1654, 2755, ...
2772, -1409, 2520, 6489, 4828, -5853, ...
-
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[2*j, j] * Binomial[2*n+1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
-
{T(n, k) = sum(j=0, n, (-k)^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}
A337421
Expansion of sqrt((1-6*x+sqrt(1-4*x+36*x^2)) / (2 * (1-4*x+36*x^2))).
Original entry on oeis.org
1, 0, -14, -48, 198, 2080, 1780, -57120, -270522, 796992, 11771676, 18981600, -314843364, -1841666112, 3400749352, 74960197312, 175979793990, -1853840247168, -13190663057780, 11783856595680, 496784970525748, 1536657455021760, -11053154849810472, -96149956882617792, 4480143410034972
Offset: 0
-
a[n_] := Sum[(-2)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Aug 27 2020 *)
-
N=40; x='x+O('x^N); Vec(sqrt((1-6*x+sqrt(1-4*x+36*x^2))/(2*(1-4*x+36*x^2))))
-
{a(n) = sum(k=0, n, (-2)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
A337422
Expansion of sqrt((1-7*x+sqrt(1-2*x+49*x^2)) / (2 * (1-2*x+49*x^2))).
Original entry on oeis.org
1, -1, -21, -7, 739, 1629, -26859, -118329, 922419, 6886397, -27414191, -358533429, 539620621, 17229485987, 8782716411, -769962297447, -1897237412973, 31786556599917, 149610560086113, -1182765435388341, -9268347520205991, 37049669347266471, 505738623506722431
Offset: 0
-
a[n_] := Sum[(-3)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 27 2020 *)
-
N=40; x='x+O('x^N); Vec(sqrt((1-7*x+sqrt(1-2*x+49*x^2))/(2*(1-2*x+49*x^2))))
-
{a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
A337393
Expansion of sqrt((1-5*x+sqrt(1-6*x+25*x^2)) / (2 * (1-6*x+25*x^2))).
Original entry on oeis.org
1, 1, -5, -41, -125, 131, 3301, 15625, 16115, -254525, -1813055, -4617755, 14903725, 192390589, 767919595, -28588201, -18144634861, -105011253485, -184605603311, 1406589226405, 12610893954745, 40402054036345, -63847551719825, -1340432504352485, -6346702151685475
Offset: 0
-
a[n_] := Sum[(-1)^(n-k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Apr 29 2021 *)
-
N=40; x='x+O('x^N); Vec(sqrt((1-5*x+sqrt(1-6*x+25*x^2))/(2*(1-6*x+25*x^2))))
-
{a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
A337396
Expansion of sqrt((1-8*x+sqrt(1+64*x^2)) / (2 * (1+64*x^2))).
Original entry on oeis.org
1, -2, -26, 76, 1222, -3772, -64676, 203992, 3607622, -11510636, -207302156, 666187432, 12142184476, -39211413464, -720760216328, 2335857124016, 43208062233158, -140406756766796, -2609918906614652, 8498967890177416, 158596941629422132, -517334728427373704, -9684521991498517112
Offset: 0
-
a[n_] := Sum[(-4)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 26 2020 *)
-
N=40; x='x+O('x^N); Vec(sqrt((1-8*x+sqrt(1+64*x^2))/(2*(1+64*x^2))))
-
{a(n) = sum(k=0, n, (-4)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
A337420
a(n) = Sum_{k=0..n} (-n)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
Original entry on oeis.org
1, 1, -14, -7, 1222, -14873, 26196, 3522955, -110841786, 2088947819, -15869398244, -823790768205, 55262757020956, -2199333670723343, 65894251730104552, -1235877788883794355, -18904175519674543546, 3743957841955101437667, -268850524243738610546292, 14826380281246309472525851
Offset: 0
-
a[n_] := Sum[If[n == 0, Boole[n == k], (-n)^(n - k)] * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Aug 27 2020 *)
-
{a(n) = sum(k=0, n, (-n)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
Showing 1-7 of 7 results.