cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337448 The numbers k for which Fibonacci(k) are Niven numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 12, 18, 36, 54, 72, 84, 112, 120, 144, 160, 180, 198, 200, 216, 240, 243, 264, 286, 288, 299, 324, 358, 360, 468, 504, 528, 540, 576, 648, 720, 780, 816, 1008, 1020, 1044, 1200, 1248, 1260, 1500, 1602, 1824, 1872, 1917, 2160, 2184, 2760
Offset: 1

Views

Author

Marius A. Burtea, Sep 14 2020

Keywords

Comments

For a(7) = 8, Fibonacci(8) = 21 and 21/digsum(21) = 7 is a prime number, so Fibonacci(8) is a Moran number (A001101). It seems that this is the only Moran number among the first 100000 Fibonacci numbers.

Examples

			Fibonacci(1) = 1 = A005349(1), so 1 is a term.
Fibonacci(8) = 21 = A005349(14), so 8 is a term.
Fibonacci(12) = 144 = A005349(8), so 12 is a term.
Fibonacci(18) = 2584 = A005349(514), so 18 is a term.
		

Crossrefs

Programs

  • Magma
    niven:=func; [k:k in [1..2760]| niven(Fibonacci(k))];
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; Select[Range[3000], nivenQ[Fibonacci[#]] &] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    isok(k) = my(f=fibonacci(k)); (f % sumdigits(f)) == 0; \\ Michel Marcus, Sep 15 2020