cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117774 Fibonacci numbers which are divisible by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 5, 8, 21, 144, 2584, 14930352, 86267571272, 498454011879264, 160500643816367088, 114059301025943970552219, 5358359254990966640871840, 555565404224292694404015791808, 1226132595394188293000174702095995, 18547707689471986212190138521399707760
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 15 2006

Keywords

Comments

Intersection of A005349 and A000045. - Michel Marcus, Jul 11 2016

Examples

			2584 is in the sequence because (1) it is a Fibonacci number, (2) the sum of its digits is 2+5+8+4=19 and 2584 is divisible by 19.
		

Crossrefs

Programs

  • Maple
    with(combinat): a:=proc(n) local ff, sod: ff:=convert(fibonacci(n),base,10): sod:=add(ff[j],j=1..nops(ff)): if type(fibonacci(n)/sod,integer)=true then fibonacci(n) else fi end: seq(a(n),n=2..180); # Emeric Deutsch, Apr 16 2006
  • Mathematica
    Select[Fibonacci[Range[2,250]],Divisible[#,Total[IntegerDigits[#]]]&] (* Harvey P. Dale, May 06 2013 *)
  • PARI
    {m=170; for(n=2,m,a=fibonacci(n); s=0; k=a; while(k>0, d=divrem(k,10); k=d[1]; s=s+d[2]); if(a%s==0,print1(a,",")))} \\ Klaus Brockhaus, Apr 16 2006

Extensions

a(11) to a(16) from Emeric Deutsch and Klaus Brockhaus, Apr 16 2006
a(17) from Harvey P. Dale, May 06 2013

A337449 The numbers k for which Lucas(k) are Niven numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 18, 56, 81, 130, 225, 396, 637, 854, 2034, 4059, 4095, 5985, 7650, 21105, 31059, 41998, 46860, 83106, 114129, 120555, 150705, 201285, 287937, 338265, 359757, 475839, 512194, 583825, 606594, 627102, 717025, 877305, 922095, 991590, 1076355
Offset: 1

Views

Author

Marius A. Burtea, Sep 14 2020

Keywords

Comments

For a(6) = 6, Lucas(6) = 18 and 18/digsum(18) = 2 is a prime number, so Lucas(6) is a Moran number (A001101).
For a(9) = 56, Lucas(56) = 505019158607 and 505019158607/digsum(505019158607) = 10745088481 is a prime number, so Lucas(56) is a Moran number.

Examples

			Lucas(0) = 2 = A005349(2), so 0 is a term.
Lucas(1) = 1 = A005349(1), so 1 is a term.
Lucas(6) = 12 = A005349(11), so 6 is a term.
Lucas(12) = 322 = A005349(90), so 12 is a term.
Lucas(18) = 5778 = A005349(1013), so 18 is a term.
		

Crossrefs

Programs

  • Magma
    niven:=func; [k:k in [0..70000]|niven(Lucas(k))];
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; Select[Range[6000], nivenQ[LucasL[#]] &] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    isok(k) = my(l=real((2+quadgen(5))*quadgen(5)^k)); (l % sumdigits(l)) == 0; \\ Michel Marcus, Sep 15 2020
    
  • Python
    A337449_list, k, p, q = [], 0, 2, 1
    while k < 10**6:
        if p % sum(int(d) for d in str(p)) == 0:
            A337449_list.append(k)
        k += 1
        p, q = q, p+q # Chai Wah Wu, Sep 17 2020

A353988 Numbers k such that Fibonacci(k) is a binary Niven number (A049445).

Original entry on oeis.org

1, 2, 3, 6, 8, 9, 10, 12, 18, 24, 30, 36, 48, 56, 60, 100, 120, 144, 150, 168, 240, 270, 288, 300, 324, 330, 336, 360, 444, 540, 594, 600, 624, 720, 750, 840, 864, 896, 900, 936, 1080, 1152, 1200, 1210, 1360, 1404, 1632, 1720, 1921, 2028, 2400, 2520, 2552, 2864
Offset: 1

Views

Author

Amiram Eldar, May 13 2022

Keywords

Comments

Numbers k such that A011373(k) | A000045(k).

Examples

			1 is a term since A000045(1) = A011373(1) = 1 and 1 | 1.
10 is a term since A000045(10) = 55, A011373(1) = 5 and 5 | 55.
		

Crossrefs

Cf. A000045, A000120, A011373, A049445, A117774, A337448 (decimal analog).

Programs

  • Mathematica
    Select[Range[3000], Divisible[(f = Fibonacci[#]), DigitCount[f, 2, 1]] &]
  • PARI
    isok(k) = my(f=fibonacci(k)); ! (f % hammingweight(f)); \\ Michel Marcus, May 13 2022
Showing 1-3 of 3 results.