cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337508 Primes such that neither the left half nor the right half of the prime is prime.

Original entry on oeis.org

11, 19, 41, 61, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 601, 619, 631, 641, 659, 661, 691, 809, 811, 821, 829, 839, 859, 881, 911, 919, 929, 941, 971, 991, 1009, 1021, 1033, 1039, 1049, 1051
Offset: 1

Views

Author

Iain Fox, Aug 30 2020

Keywords

Comments

For n > 9, the center digit is not considered when making the calculation. For a prime number to be in this sequence, both the substring to the left of the center and the substring to the right of the center must be nonprime.
If a number appears in this sequence, it will not appear in A125523, A125524, or A125525.
A000040 is the union of this sequence, A125523, A125524, and A125525.

Examples

			479 is prime. The left part of (4)79 is not prime. The right part of 47(9) is not prime.
		

Crossrefs

Programs

  • Maple
    q:= n-> isprime(n) and (s-> (h-> not ormap(x-> isprime(parse(x)),
            [s[1..h], s[-h..-1]]))(iquo(length(s), 2)))(""||n):
    select(q, [$11..2000])[];  # Alois P. Heinz, Sep 14 2020
  • Mathematica
    lhrhQ[p_]:=Module[{idp=IntegerDigits[p],c},c=Floor[Length[idp]/2];AllTrue[ {FromDigits[ Take[idp,c]],FromDigits[Take[idp,-c]]},!PrimeQ[#]&]]; Select[Prime[Range[5,200]],lhrhQ] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    lista(nn) = forprime(p=11, nn, my(l=#Str(p), e=floor(l/2), left=floor(p/10^(e+l%2)), right=p-floor(p/10^e)*10^e); if(!isprime(left) && !isprime(right), print1(p, ", ")))
    
  • Python
    from sympy import nextprime, isprime
    A337508_list, p = [], 11
    while p < 10**6:
        s = str(p)
        l = len(s)//2
        if not (isprime(int(s[:l])) or isprime(int(s[-l:]))):
            A337508_list.append(p)
        p = nextprime(p) # Chai Wah Wu, Sep 14 2020