cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340022 Number of graphs with vertices labeled with positive integers summing to n.

Original entry on oeis.org

1, 1, 3, 7, 22, 71, 319, 1939, 19790, 377259, 14603435, 1144417513, 176665721300, 52525450429119, 29719386740326525, 31836493683553082697, 64474640381705842520802, 246962703426353769596309789, 1791765285568042699367722904797, 24670014908867411635732865067513309
Offset: 0

Views

Author

Andrew Howroyd, Jan 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    seq[n_] := 1 + Sum[s = 0; Do[s += permcount[p]*2^edges[p]*x^k/Product[1 - x^p[[j]] + O[x]^(n-k+1), {j, 1, Length[p]}],{p, IntegerPartitions[k]}]; s/k!, {k, 1, n}] // CoefficientList[#, x]&;
    seq[19] (* Jean-François Alcover, Jan 06 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    seq(n) = {Vec(1+sum(k=1, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * x^k/prod(j=1, #p, 1 - x^p[j] + O(x^(n-k+1)))); s/k!))}

A337717 Number of connected graphs, where vertices are labeled with positive integers summing to n, and where identically labeled vertices are indistinguishable and cannot be connected with an edge.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 28, 65, 173, 496, 1527, 5092, 18669, 74601, 325206, 1572191, 8487232, 50962240, 343162568, 2627538015, 22853622935, 225118360626, 2539559186827, 33036542404276, 491977100299885, 8394837931641837
Offset: 0

Views

Author

Max Alekseyev following a suggestion from Franklin T. Adams-Watters, Sep 16 2020

Keywords

Crossrefs

Inverse Euler transform of A337716.
Showing 1-2 of 2 results.