cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337763 Number of partitions of the n-th n-gonal number into distinct n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 4, 4, 2, 2, 4, 7, 8, 5, 6, 14, 6, 13, 23, 16, 19, 32, 34, 48, 56, 62, 73, 137, 126, 203, 257, 256, 409, 503, 612, 794, 1097, 1203, 1737, 2141, 2773, 3322, 4527, 5087, 7497, 8214, 11238, 12598
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(5) = 2 because 5th pentagonal number is 35 and we have [35] and [22, 12, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A337764 Number of compositions (ordered partitions) of the n-th n-gonal number into n-gonal numbers.

Original entry on oeis.org

1, 1, 2, 7, 124, 14371, 12842911, 103590035354, 8621925847489749, 8307493939404888703058, 102488432265617100812550713499, 17706351554929677399562928448484650120, 46435685450659378932235460132506329282776942795
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(3) = 7 because the third triangular number is 6 and we have [6], [3, 3], [3, 1, 1, 1], [1, 3, 1, 1], [1, 1, 3, 1], [1, 1, 1, 3] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] 1 / (1 - Sum_{k=1..n} x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A337797 Number of partitions of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 2, 4, 13, 45, 198, 858, 3728, 16115, 69125, 292940, 1224628, 5052396, 20570806, 82655098, 327881398, 1284663878, 4973614490, 19034194696, 72037124003, 269723590850, 999517370314, 3667158097572, 13325691939021, 47975192145998
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 22 2020

Keywords

Examples

			a(3) = 4 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} 1 / (1 - x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A335633 Number of ordered ways of writing the n-th n-gonal number as a sum of n n-gonal numbers (with 0's allowed).

Original entry on oeis.org

1, 1, 3, 6, 5, 95, 336, 2597, 26832, 197577, 1847800, 14621101, 129754956, 1146534701, 12342194879, 161225146370, 2464561564936, 39642413790129, 620059254486798, 9430493858327959, 136438759335452360, 1881721996407396801, 24999081626667425376, 321601467988647184779
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2020

Keywords

Examples

			a(3) = 6 because the third triangular number is 6 and we have [6, 0, 0], [0, 6, 0], [0, 0, 6], [3, 3, 0], [3, 0, 3] and [0, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 0, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 0, 23}]
  • PARI
    p(n,k) = {k * (k * (n - 2) - n + 4) / 2}
    a(n) = {my(m=p(n,n)); polcoef((sum(k=0, n, x^p(n,k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020

Formula

a(n) = [x^p(n,n)] (Sum_{k=0..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A335634 Number of ordered ways of writing the n-th n-gonal number as a sum of n nonzero n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 0, 1, 30, 180, 700, 3780, 11844, 50610, 325820, 5803380, 126594910, 2114901789, 28282722650, 323420067880, 3190581939996, 29336527986960, 245438739897312, 1967485926594030, 16000631392009320, 184418174847183508, 4054670001158799616, 111835386569787369559
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2020

Keywords

Examples

			a(4) = 1 because the fourth square is 16 and we have [4, 4, 4, 4].
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 1, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 1, 24}]]
  • PARI
    p(n,k) = {k * (k * (n - 2) - n + 4) / 2}
    a(n) = {my(m=p(n,n)); polcoef((sum(k=1, n, x^p(n,k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020

Formula

a(n) = [x^p(n,n)] (Sum_{k=1..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.
Showing 1-5 of 5 results.