A337785 Number of addition triangles whose sum is n (version 1).
1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 9, 1, 9, 4, 9, 3, 14, 2, 14, 6, 14, 5, 21, 4, 19, 10, 21, 8, 27, 6, 29, 16, 25, 12, 38, 14, 33, 19, 37, 22, 46, 14, 47, 33, 45, 22, 59, 29, 59, 35, 56, 40, 74, 34, 68, 53, 72, 47, 90, 47, 88, 63, 88, 64, 105, 59, 108, 84, 106, 75, 130, 81, 125, 99, 128, 103, 147
Offset: 1
Examples
n | -----+------------------------------------------------ 1 | 1 -----+------------------------------------------------ 2 | 2 -----+------------------------------------------------ 3 | 3 -----+------------------------------------------------ 4 | 2 | 4 1,1 -----+------------------------------------------------ 5 | 5 -----+------------------------------------------------ 6 | 3 3 | 6 1,2 2,1 -----+------------------------------------------------ 7 | 7 -----+------------------------------------------------ 8 | 4 4 4 | 8 1,3 2,2 3,1 -----+------------------------------------------------ 9 | 9 -----+------------------------------------------------ 10 | 5 5 5 5 | 10 1,4 2,3 3,2 4,1 -----+------------------------------------------------ 11 | 4 | 2,2 | 11 1,1,1 -----+------------------------------------------------ 12 | 6 6 6 6 6 | 12 1,5 2,4 3,3 4,2 5,1 -----+------------------------------------------------ 13 | 13 -----+------------------------------------------------ 14 | 5 5 | 7 7 7 7 7 7 2,3 3,2 | 14 1,6 2,5 3,4 4,3 5,2 6,1 1,1,2 2,1,1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..500
Programs
-
Ruby
def f(n) ary = [1] (n - 1).times{|i| ary = [0] + ary + [0] ary = (0..i + 1).map{|j| ary[j] + ary[j + 1] + 1} } ary end def A(n) f_ary = (1..n / 2).map{|i| [i]} cnt = 1 s = 1 while f_ary.size > 0 s_ary = f(s + 1) b_ary = [] f_ary.each{|i| (1..i[0] - 1).each{|j| a = [j] (0..s - 1).each{|k| num = i[k] - a[k] if num > 0 a << num else break end } if a.size == s + 1 sum = (0..s).inject(0){|t, m| t + s_ary[m] * a[m]} if sum < n b_ary << a elsif sum == n cnt += 1 end end } } f_ary = b_ary s += 1 end cnt end def A337785(n) (1..n).map{|i| A(i)} end p A337785(50)
Comments