A337873 Numbers m such that the equation m = k*sigma(k) has more than one solution.
336, 5952, 10080, 27776, 44352, 60480, 61152, 97536, 102816, 127680, 178560, 185472, 196560, 260400, 292320, 333312, 455168, 472416, 578592, 635712, 758016, 785664, 833280, 961632, 1083264, 1179360, 1189440, 1270752, 1330560, 1530816, 1717632, 1815072, 1821312, 1834560
Offset: 1
Examples
For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3. For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5. For a(3): 60 * sigma(60) = 70 * sigma(70) = 10080 with 60/12 = 70/14 = 5. a(16) = 333312 is the smallest term with 3 preimages because 336 * sigma(336) = 372 * sigma(372) = 434 * sigma(434) = 333312.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
Crossrefs
Programs
-
Mathematica
m = 2*10^6; v = Table[0, {m}]; Do[i = n*DivisorSigma[1, n]; If[i <= m, v[[i]]++], {n, 1, Floor@Sqrt[m]}]; Position[v, ?(# > 1 &)] // Flatten (* _Amiram Eldar, Sep 28 2020 *)
-
PARI
upto(n) = {m = Map(); res = List(); n = sqrtint(n); for(i = 1, n, c = i*sigma(i); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1) , mapput(m, c, 1); ) ); listsort(res, 1); select(x -> x <= (n+1)^2, res) } \\ David A. Corneth, Sep 27 2020
-
PARI
isok(m) = {my(nb=0); fordiv(m, d, if (d*sigma(d) == m, nb++; if (nb>1, return(1)));); return (0);} \\ Michel Marcus, Sep 29 2020
Extensions
More terms from David A. Corneth, Sep 27 2020
Comments