A337898 Number of achiral colorings of the 6 square faces of a cube or the 6 vertices of a regular octahedron using n or fewer colors.
1, 10, 55, 200, 560, 1316, 2730, 5160, 9075, 15070, 23881, 36400, 53690, 77000, 107780, 147696, 198645, 262770, 342475, 440440, 559636, 703340, 875150, 1079000, 1319175, 1600326, 1927485, 2306080, 2741950, 3241360
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Mathematica
Table[n(1+n)(2+n)(4-3n+3n^2)/24, {n, 35}] LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,55,200,560,1316},40] (* Harvey P. Dale, Feb 15 2022 *)
-
PARI
a(n)=n*(n+1)*(n+2)*(3*n^2-3*n+4)/24 \\ Charles R Greathouse IV, Oct 21 2022
Formula
a(n) = n * (n+1) * (n+2) * (3*n^2 - 3*n + 4) / 24.
a(n) = 1*C(n,1) + 8*C(n,2) + 28*C(n,3) + 36*C(n,4) + 15*C(n,5), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
G.f.: x * (x + 4*x^2 + 10*x^3) / (1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 30 2020
Comments