cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337898 Number of achiral colorings of the 6 square faces of a cube or the 6 vertices of a regular octahedron using n or fewer colors.

Original entry on oeis.org

1, 10, 55, 200, 560, 1316, 2730, 5160, 9075, 15070, 23881, 36400, 53690, 77000, 107780, 147696, 198645, 262770, 342475, 440440, 559636, 703340, 875150, 1079000, 1319175, 1600326, 1927485, 2306080, 2741950, 3241360
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the cube and regular octahedron are {4,3} and {3,4} respectively. They are mutually dual.
There are 24 elements in the automorphism group of the regular octahedron/cube that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the cube face (octahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^3
Vertex rotation* 8 x_6^1 Asterisk indicates that the
Edge rotation* 6 x_1^2x_2^2 operation is followed by an
Small face rotation* 6 x_2^1x_4^1 inversion.
Large face rotation* 3 x_1^4x_2^1

Crossrefs

Cf. A047780 (oriented), A198833 (unoriented), A093566(n+1) (chiral).
Other elements: A331351 (edges), A337897 (cube vertices/octahedron faces).
Other polyhedra: A006003 (simplex), A337962 (dodecahedron faces, icosahedron vertices), A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of A325007 (orthotope facets, orthoplex vertices) and A337890 (orthotope faces, orthoplex peaks).

Programs

  • Mathematica
    Table[n(1+n)(2+n)(4-3n+3n^2)/24, {n, 35}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,55,200,560,1316},40] (* Harvey P. Dale, Feb 15 2022 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(3*n^2-3*n+4)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = n * (n+1) * (n+2) * (3*n^2 - 3*n + 4) / 24.
a(n) = 1*C(n,1) + 8*C(n,2) + 28*C(n,3) + 36*C(n,4) + 15*C(n,5), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A198833(n) - A047780(n) = A047780(n) - 2*A093566(n+1) = A198833(n) - A093566(n+1).
G.f.: x * (x + 4*x^2 + 10*x^3) / (1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 30 2020